Introduction to river plastic monitoring

Tim H.M. van Emmerik¹, Sabrina Kirschke², Christian Schmidt³

¹Wageningen University, the Netherlands

²Museum für Naturkunde, Germany

³UFZ, Leipzig, Germany

Wageningen River Plastic Team

- <u>Monitoring tools</u>: Visual, sampling, image-based, AI, satellite, sonar
- <u>Monitoring strategies</u>: Netherlands,
 Rhine, Mekong, Ghana, Thailand
- <u>Transport processes</u>: Emission to ocean, retention, floods
- <u>Capacity building</u>: Japan, Netherlands,
 Germany, Cambodia, Ghana, Thailand

What you should remember

 There is no one-size-fits all for river plastic monitoring

 Best strategy depends on the goals, river, and resources

Start simple, add complexity

What I talk about, when I talk about plastic

NANO PLASTIC

MICROPLASTIC

(van Emmerik & Schwarz, 2020)

Negative effects of macroplastics

Kill and injure animals and plants

Largest source of microplastics

Rivers: Source or sink?

48.3–56.3 Mt/year entry into environment

 0.5-2.5 Mt/year from rivers into the ocean

3.0 Mt plastic in the ocean

What is the role of rivers?

Rivers: Source or sink?

 48.3–56.3 Mt/year entry into environment

 0.5-2.5 Mt/year from rivers into the ocean

3.0 Mt plastic in the ocean

What is the role of rivers?

Comment | Published: 12 June 2023

Diverging estimates of river plastic input to the ocean

>4 orders of magnitude uncertainty for single river

Where does all the plastic go?

Rivers act as plastic **reservoirs**

Most plastic **does not** flow into the ocean

SINKS

(Meijer et al., 2021;

INTO THE OCEAN

River plastic monitoring is crucial to reduce uncertainties

Monitoring river plastic pollution

- Set baseline what is the level of pollution?
- Optimize interventions what to prioritize?
- Evaluate interventions is it working?
- Trend analysis more/less pollution?

Observing river plastic pollution

Sampling

Visual counting

Image-based

Monitoring river plastic pollution

Monitoring river plastic pollution

Sampling

Visual counting

Image-based

Method overview

METHOD	Riverbank	Floating	Suspended	Sediment
Visual counting	/	✓	X	×
Net sampling	✓	/	\	✓
Other sampling	/	/	\	X
Drones		\	×	X
Cameras	✓	\	X	X
Citizen science	✓	✓	×	×
Satellite remote sensing	/	\	×	X

FLOATING

- Divide bridge in segments
- Count all floating items
- Express plastic flux in items/hour or items/min

RIVERBANK

- Sampling area of 100 m long and 25 wide
- Count all items using (River-)OSPAR item list
- Express in items/km or items/m²

VISUAL COUNTING

ADVANTAGES

- · Quick, easy, and consistent data
- Suitable for monitoring with students or citizen science
- Insights in order of magnitude of transport, emission and item types

- •
- Only floating or riverbank plastics
 - Observer bias
 - No data on the mass
 - Need safe bridge and riverbank access

FLOATING

- Deploy from bridges or boats
- Measure flow velocity to calculate concentration
- Options of further analysis

SUSPENDED

- Deploy from bridges or boats
- Multilayer net for deeper samples
- Bottom trawls for deepest layers

(NET) SAMPLING

ADVANTAGES

- Can be quick and easy, if nets are small and deployed from bridges
- Samples offer any options for further analysis (item/mass distribution, polymer type)
- Flexible application

- Need additional equipment or infrastructure
 - Can be unsafe and/or heavy
 - · Deeper layers still challenging

LITTER TRAPS

- Use available litter traps to collect and analyze waste
- Note down important characteristics (location, depth, sampling volume)

RIVERBANK

- · Collect litter on riverbanks, e.g. during visual counting
- Measure mass, size and item/polymer type

OTHER SAMPLING

ADVANTAGES

- Use available infrastructure
- · Allows for rapid assessment
- New opportunities, e.g. fishing (research) infrastructure, dredging.

- · Constrained by available infrastructure
 - Not flexible
 - No transport flux or emission estimates

FLOATING/ RIVERBANK

- Select flying altitude
- Trade-off between battery life and observation locations/duration
- Manual and automated processing

DRONES

ADVANTAGES

- No need for a bridge
- Unbiased raw data
- Flexible monitoring approach

- Often permits are required
- Data processing time consuming
- RGB images not best for detecting plastics

HARDWARE

- Install camera on bridges
- Monitor distance to water level
- Choose videos or images

WAGENINGEN UNIVERSITY & RESEARCH

SOFTWARE

- Manual labeling for training dataset
- Choose an algorithm
- Training/testing

CAMERAS

ADVANTAGES

- Potential for automated monitoring
- Once working, possibilities for upscaling
- Potential for mobile phone cameras

- Substantial amount of manual processing required
 - Al models not well transferable
 - Relatively expensive

SUSPENDED

- Acoustic sensors from boats or fixed points
- Detect plastic items over water column
- Manual or automatic detection

ACOUSTIC SENSING

ADVANTAGES

- No need for invasive measurements
- No need for large vessels or cranes
- Continuous measurements

- Early stage of development
- Known items can be detected, not possible to infer information from signal yet
- Plastic similar to organic material

RIVERBANK

- Counting and collecting litter along river shores
- Done by citizens, schoolkids, students

FLOATING

- Sampling through cleanup activities
- Analysis of the sampled materials

CITIZEN SCIENCE

ADVANTAGES

- Suitable for upscaling over time and space
- Large-scale monitoring
- Community engagement
- Additional (anecdotal) data

- Dependent on volunteers
- · Limitations on what can be asked
- Quality control
- Need strong local network

Choose your own adventure

Element	Sub-element	Range		
Space	Domain	Sub-basin	•••	Multi-basin
	Sampling area	Subsampling	•	Sampling larger area
	Structure	Structured	•	Unstructured
Time	Period	4 Weeks	•	Single day
	Frequency	Yearly	•	Daily
	Structure	Structured	•	Unstructured
	Duration	Singular	•••	Multi-year
Observers		Citizen Scientists	•	Trained Professionals
Categorization	Category	Material Based	••••	Identity Based
	Size Range	Macro	• • •	Macro and Micro

Visual Counting

@TimVanEmmerik | tim.vanemmerik@wur.nl

Visual counting

 Visual counting is a cost-effective method for easy upscaling

Used around the world, from Europe to Asia

Potential for combining with citizen science

A Visual observation

Visual counting: The concept

$$T_p = I_P \cdot \overline{m_p}$$

- Tp: Plastic mass transport
- Ip: Plastic item transport
- Mp: Mean mass per item

A Visual observation

Visual counting: The concept

$$T_p = I_P \cdot \overline{m_p}$$

Tp: Calculated

■ Ip: Measured

Mp: Measured or literature

A Visual observation

Visual counting: The measurement

- Count floating items from bridges
- Divide bridge in n segments
- For a measurement, all floating items are counted for duration t
- Results in items/minute or items/hour

Visual counting: The measurement

- Calculate average items/min or items/hour per segment
- Extrapolate to for total width
- Example:
 - 5 items/min
 - 5 segments
 - Total: 25 items/min

Visual counting in practice

Step 1: Find safe and suitable locations

Step 2: Divide bridge into segments

Step 3: Determine observation time

Step 4: Determine observation frequency

Example 1: Saigon river, Vietnam

Seasonal cycle and processes

- 1 bridge in Saigon
- 12 segments per bridge
- 8 measurements per day
- 2-5 measurements per week
- One person full-time

Example 1: Saigon river, Vietnam

Example 1: Saigon river, Vietnam

Plastics and water hyacinths

- Up to 80% of plastics in hyacinths
- Relevant for transport, fate, and monitoring.

Visual counting: Advanced options

- Count specific categories
- 7 polymer categories, based on specific items
- More clues about sources, sinks, and fate

Name	Properties	Common uses	Pictures	
PET (Polyethylene Terephthalate)	Always clear Softens at 80dg	Soft drink bottles Salad containers	hay wall	No.
PO Soft PE (HD/LD) and PP Foils (High/Low Density Polyethylene)	Coloured Waxy surface Softens at 70dg	Shopping bags		
PO Hard PE (HD/LD) and PP Ridgid (High/Low Density Polyethylene)	Waxy surface Softens at 70dg	Milk bottles Shampoo and chemical bottles Ice cream tubs Lunch boxes	íÓh	
Multilayer PE / others (Polyehtylene & others)	Flexible, glossy surface, printed foils		30	
PS (Polyststyrene)	Clear Rigid Glassy Softens at 195dg	Brittle toys Plastic cutlery CD cases		Fine ex.
PS-E Expanded polystyrene	Foams	Polystyrene cups Foamed meat trays		9:

Example 2: The Dutch Delta

Transport through Rhine and Meuse

- 26 bridges across the country
- 5 to 12 segments per bridge
- 4 measurements per day
- 1 day per month + 2 extra days after flood event
- Team of 40 students and colleagues

Example 2: The Dutch Delta

Example 2: The Dutch Delta

Example 3: Emissions into the ocean

Emissions from river into the sea

- Net transport affected by the tide
- Cover two consecutive tidal cycles (24.8 hours)
- Saigon: <25% of total plastic is transported downstream

Example 3: Emissions into the ocean

Example 4: European project RIMMEL

Europe's share in the plastic soup

- 42 rivers, one bridge per river
- One segment per bridge
- One 30-minute measurement
- 10-30 measurements per year

Example 4: European project RIMMEL

Example 5: Global baseline

Visual counting

 Good method for first order assessment

 Flexible approach, can be tailored to specific questions

Easy to scale up, also with citizen scientists

Riverbank sampling

@TimVanEmmerik | tim.vanemmerik@wur.nl

Riverbank sampling

 Good method for detailed assessment

 Flexible approach, can be tailored to specific questions

 Find trade-off between level of detail and required effort

- Select sampling area
- Choose level of detail
- Collect the waste, or tally the items without collection
- Choose measurement frequency
- Determine number of locations

Select sampling area

- Rectangular areas or circles
- Depends on the level of pollution
- Micro or macro?

Choose level of detail

- More detail, more information
- More detail, more effort
- What is the question, and what information is needed?

Choose level of detail

- More detail, more information
- More detail, more effort
- What is the question, and what information is needed?

Example:

Litter \rightarrow Plastic \rightarrow PO hard \rightarrow PE or PP \rightarrow "Food" \rightarrow 22. Cutlery

Collect the waste, or tally the items without collection

- Collection: Can also measure the mass and the size (and it's remove from the environment)
- Tallying: Less effort, and "no disturbance of system"

Choose measurement frequency

- Yearly, monthly, daily?
- Structured or unstructured?

Determine number of locations

- One location in detail, or many locations superficially?
- How to mobilize observers?

Element	Sub-element	Range		
Space	Domain	Sub-basin	•••	Multi-basin
	Sampling area	Subsampling	**	Sampling larger area
	Structure	Structured	•	Unstructured
Time	Period	4 Weeks	••	Single day
	Frequency	Yearly		Daily
	Structure	Structured	•	Unstructured
	Duration	Singular	**	Multi-year
Observers		Citizen Scientists	•	Trained Professionals
Categorization	Category	Material Based	••••	Identity Based
	Size Range	Macro	•	Macro and Micro

Riverbank sampling: Examples

- Plastic Pirates
- Schone Rivieren
- Battulga et al.
- CrowdWater

Example 1: Odaw river basin

Riverbank and land

- Ten locations along river
- Riverbank and land sampling areas
- Three times within a month
- Detailed analysis of composition

Example 1: Odaw river basin

Example 2: German rivers

Rivers across the country

- 6 main rivers
- Schoolkids did the sampling
- Simple categorization

Example 2: German rivers

Example 3: Rhine and Meuse

Clean Rivers project

- Over 300 locations along Rhine and Meuse delta
- Over 1000 volunteers
- Bi-annual monitoring
- Detailed classification

Example 3: Rhine and Meuse

Example 4: Basin-scale post-flood sampling

Spatial variation

- 25 sampling points
- Cover entire Dutch Meuse
- Compare with non-flood conditions

Example 4: Basin-scale post-flood sampling

Riverbank sampling

 Good method for detailed assessment

 Flexible approach, can be tailored to specific questions

 Find trade-off between level of detail and required effort

Future developments

@TimVanEmmerik | tim.vanemmerik@wur.nl

Opportunities for upscaling

Citizen Science

Trained volunteers

Camera (+ AI)

- Fixed
- Drones

A Visual observation

Visual observations with cameras

Continuous monitoring

 Many challenges in data processing

Hardware setup not trivial

Visual observations with drones

 Alternative for locations without bridge

Suitable for system scale applications

 Data processing + legal challenges

Van Emmerik et al. (2024)

Role of AI

- Promising method to increase datasets (yolo, (Faster R-)CNN, etc)
- Models struggle to get overall high performance (precision, recall, mAP)
- Optimize number of classes

Future of visual counting

- Simple method to upscale
- Used for transport, export, composition
- Quantify uncertainties
- Camera, drones and AI offer alternatives, TRL still low

71

Photos: Paul Vriend

Towards a river plastic budget

What you should remember

 There is no one-size-fits all for river plastic monitoring

 Best strategy depends on the goals, river, and resources

Start simple, add complexity

Excursion!

- Two groups
- Nyamasaria river
- Practice with methods
- Visual counting + riverbank sampling
- Back around 13:00
- Afternoon: clean, process and visualize the data

Introduction to river plastic monitoring

Tim H.M. van Emmerik¹, Sabrina Kirschke², Christian Schmidt³

¹Wageningen University, the Netherlands

²Museum für Naturkunde, Germany

³UFZ, Leipzig, Germany

Assignment – 10 min!

- Pick a river
- Determine your research question
- Design the visual counting and/or riverbank sampling strategy
- Estimate the required capacity and/or funding
- Evaluate the feasibility

