

Paper at the NBDF7 Webinar

Water quality and sediment monitoring in the Nile Basin countries

WQ1: Water quality monitoring

Jean Namugize and Michael Kizza

Global water quality issues

- One in nine people worldwide uses drinking water from unimproved and unsafe sources
- 2.4 billion people live without any form of sanitation
- Lack of sanitation is one of the most significant forms of water pollution.
- 90% of sewage in developing countries is discharged untreated directly into water bodies
- Every day 2 million tonnes of sewage and other effluents drain into the world's water
- Industry discharges an estimated 300-400 megatonnes of waste into water bodies

Water quality issues

- Non-point source pollution from agriculture and urban areas often greatly increases the total pollutant load together with industrial point source pollution
- A reduction of about one-third of the global biodiversity is estimated to be a consequence of the degradation of freshwater ecosystems mainly due to pollution of water resources and aquatic ecosystems
- Re-use of wastewater in agriculture is important for livelihoods, but is associated with serious health risks

Water quality issues in Nile Basin

- Accelerated erosion from deforestation and agricultural conversion of natural areas leading increased sediment loads
- Industrial activity concentrated along the river banks
- Agro-industries particularly sugar cane downstream part of the basin
- Industrial and domestic wastewater
- Irrigation-drainage canals as a source of multiple contaminants in part of the basin

Basin water quality management challenges

- Water quality and sediment monitoring programs and data are limited
- Lack of funding resources for personnel and for water analysis equipment,
- No adequate or modern data acquisition and management system for receiving, processing, storing, dissemination and transmitting water resources data and information,
- Institution and human capacities for water quality analysis including detailed technical analyses and modeling tools to understand the basinwide dynamics of water quality are scarce
- No harmonized policies/standards on water quality
- Low level of awareness and involvement of the basin's citizens in pollution prevention activities

Nile cooperation for climate resilience (NCCR) project

NCCR project is financially supported by the World Bank through the Cooperation in International Waters in Africa (CIWA) trust fund

Project objective: to improve mechanisms for cooperation on water resources management and development in the Nile Basin

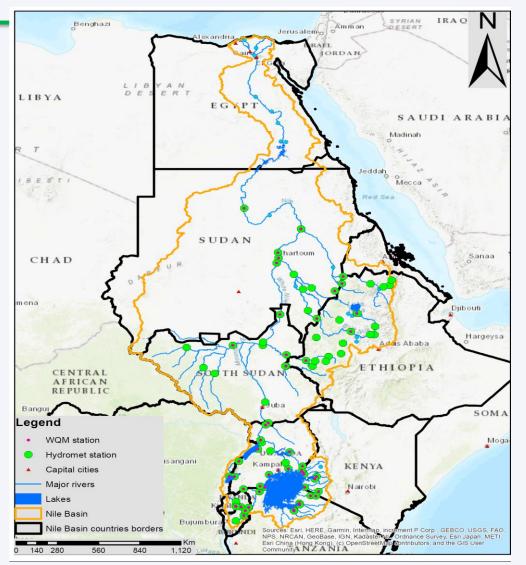
Implementation agencies: Nile-SEC, ENTRO, NELSAP-CU, NBD and LVBC,

Period: March 2021 and will close in November 2025

Budget: USD 30M

Project five thematic areas:

- 1. platform for cooperation,
- 2. flood and drought risk mitigation,
- dam safety capacity building
- 4. Innovative information services for climate-resilient investment planning, and
- 5. Water quality investment planning and prioritization.



- 52 regional stations for WQ monitoring
- 43 stations sediment sampling
- 39 water quality sensors for real measurement
- Lab equipment
- WQ and sediment field kits
- Capacity building of water experts
- Water quality data base

Objectives and methods

To evaluate the current state of Nile Basin countries in monitoring of the quality of water and sediment

Methods

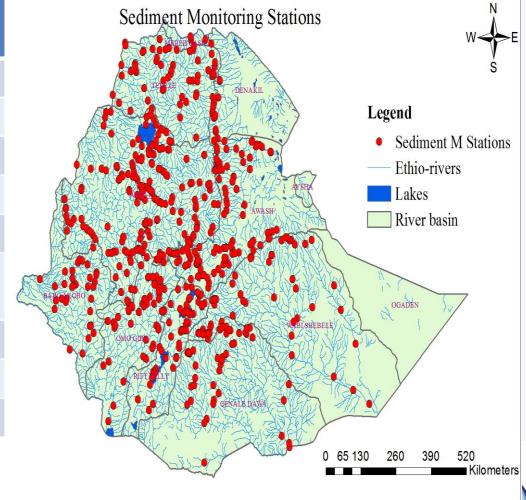
- Collection of data and information on water monitoring programs and institutions in each country
- Visiting of the water quality monitoring stations and labs in NB countries
- Meeting the national water quality task teams
- Checking the availability of sediment/ water quality field kits and water quality sensors and stations

Countries needs assessment in NB countries

Country	Period
Burundi	25-27 Jul
Rwanda	2-5 Aug
Tanzania	22-27 Aug
Uganda	6-9 Sep
S. Sudan	12-16 Sep
Sudan	4-9 Oct
Ethiopia	14-18 Nov
Kenya	28 Nov-3 Dec
DRC	Mar 2023

Key findings: Monitoring tools

- Legal and institutional tools on water monitoring exist in the NB riparian countries (laws, policies and standards)
- Inconsistency of water monitoring programs in terms of monitoring frequency and monitored parameters
- Telemetric equipment for real time monitoring are found in some countries (Ethiopia, Uganda, Rwanda,)
- Data management systems are available in some countries and do not exist in the others



Key findings: water quality and sediment monitoring

country	Basic and field kits (Y/N)	Sediment sampling kits (Y/N)	Water Sensors (Y/N)
Burundi	Υ	N	N
DRC	NA	NA	NA
Ethiopia	Υ	Υ	Υ
Kenya	Υ	N	N
Rwanda	Υ	N	N
South Sudan	Υ	N	N
Sudan	Υ	N	N
Tanzania	Υ	Υ	N
Uganda	Υ	N	N

Key findings: Water quality variables

- Basic parameters like, pH, EC, turbidity, DO, temperature, TDS and nutrient are generally monitoring in all the countries though irregularity in sampling frequency was noted
- Pesticides, microplastics, bacteriological, organic pollutants and heavy metals are not monitored in the majority of the countries
- Monitoring frequency differs among the countries, from monthly to quarterly

Water Use	Parameters
Primary	Temperature, Turbidity, TDS, EC, DO, pH.
Food and Beverage Industries	Microbes (E-coli, coliforms), COD+BOD, Ammonia, TN and TP
Iron manufacturing and Industrial zones	BOD, COD, oil, metals, acids, phenols, cyanide
Agriculture activities	Pesticides, TN, TP, pH, organic matter, DO
Recreational Places and Urban centers	Pesticides, TN, TP, pH, organic matter, DO, heavy metals, microorganisms, acids, salts

Station type	Parameters
Surface water stations	Ph, Temp, E.C, D.O, major anions & cations, TSS, TDS, Nutrients (TN, TP, NO ₃ -, NO ₂ -, PO ₄ ³⁻), Flow
Groundwater station (incl. water supply points)	Ph, Temp, E.C, D.O, major anions & cations, TSS, TDS, Nutrients (TN, TP, NO_3^- , NO_2^- , PO_4^{3-}), Bacteriological (E-colli, Total coliform, streptococcus)
Effluent discharge points	Ph, Temp, E.C, D.O, BOD, COD, TSS, TDS, Nutrients (TN, TP, NO ₃ -, NO ₂ -, PO ₄ ³⁻), heavy metals

Recommendations

- Funding resources to implement regular water quality monitoring program in the basin are needed
- Advanced analytical equipment are needed and where they do exist (AAS, GC) lack of reagents and minor spare parts
- Initiate the transboundary water quality monitoring network is needed
- There is a need to build the capacity of water quality sampling and analysis staff in operation and maintenance of lab equipment
- Ambient water quality standard to ease the classification of ambient water as stated by SDG6.3.2 is needed

