

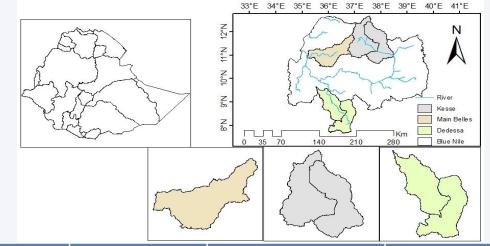
Climate Change and its Impact on Streamflow in the upper Blue Nile River Basin, Ethiopia. BY Gizachew Kassa

Introduction

- Climate change can cause significant effects on water resources by resulting in changes in the hydrological cycle.
- Significant change in mean annual precipitation and average temperature through various periods are principal implications of climate change; and
- ➤ they are the main determinants of the hydrologic cycle, seasonal occurrence and flows of water in rivers, wetlands, and soils in a basin.

Introduction

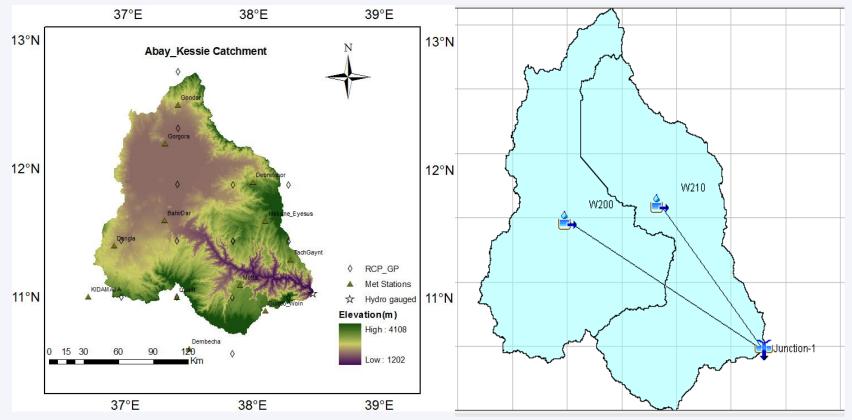
- Different climate model ensemble results are effective in reducing uncertainty in long-term climate simulation that arises from internal variability, boundary conditions, parameter values for a given model structure, or structural uncertainty due to different model formulations.
- ➤ The use of GCMs outputs and hydrological modelling is the best method in estimating future plausible streamflow changes due to climate change.


Study Area Description

HE ZUSAMMENARREI

THE WORLD BANK

IDA | WORLD BANK GROUP



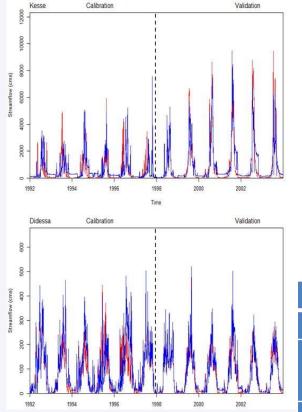
S.N.	Data type	Resolution		Data sources	
		Temporal	Spatial (m)		
1	Historical Climate	1985-2013		* EMI	
	data				
2	CMIP5/GCM	(1981-		https://esgf-	
	Climate data	2005),(202		node.llnl.gov/search/cmip5/	
		0-2080)			
3	DEM		30x30	https://earthexplorer.usgs.gov/	
4	Flow Data			** MoWIE	
5	LULC		30x30	https://earthexplorer.usgs.gov/	
6	Soil		30x30	http://www.fao.org/soils-portal/	
CIWA	german cooperation giz	Deutsche Gesellicchaft für Internationale Zusiennendrich (1922) Brackt			

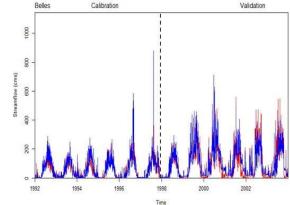
NILE BASIN INITIATIVE INITIATIVE DU BASSIN DU NIL

Hydrological modeling

HEC-HMS4.2 hydrologic modelling basin model physical watershed map for Kessie catchment during calibration.

Result and Discussion


A WORLD BANK GROU



Precipitation (A) and Evapotranspiration (B) Mann-Kendal trend test statistics

tistics (198 Z C lope Z lope -	35-2013) 209 0.73 0. 1.3 -1 0.8 0.0	P4.5 50's 2080 .74 0.67 1.2 2.7 002 0.86 4.9 -1.1	7 0.76 -1.1 5 0.6	2080's 0.6 -3.8 0.5
Z C lope Z C lope	0.73 0. 1.3 -1 0.8 0.0	.74 0.67 1.2 2.7 002 0.86	7 0.76 -1.1 5 0.6	0.6 -3.8 0.5
lope Z lope	1.3 -1 0.8 0.0	1.2 2.7 002 0.86	-1.1 5 0.6	-3.8 0.5
Z lope	0.8 0.0	0.86	5 0.6	0.5
lope -				
	-1.7 -1	4.9 -1.1	2 1 2	
			2.12	2.6
Ζ (0.01 0	0.2 0.6	0.7	0.6
lope	9.5 -8	3.8 -2.7	-1.5	1.22
Z	0.5 0	0.2 0.2	0.9	0.2
lope -	-0.8 2	.2 -1.6	0.28	3.2
Z	0.2 0	0.2 0.3	0.5	0.8
lope	1.1 1	2 -1.4	0.7	-0.54
7	0.5 0	0.2 0.1	0.4	0.5
2			1.4	-1.2
	ope Z	Z 0.5 0	Z 0.5 0.2 0.1	

Hydrological Modelling and Performance

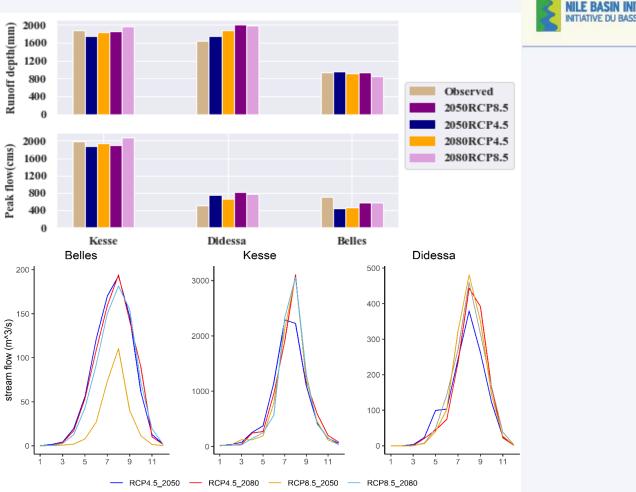
Qobs(m³/s)

HydrographofmodelperformanceforcalibrationvalidationofHEC-

HMS model

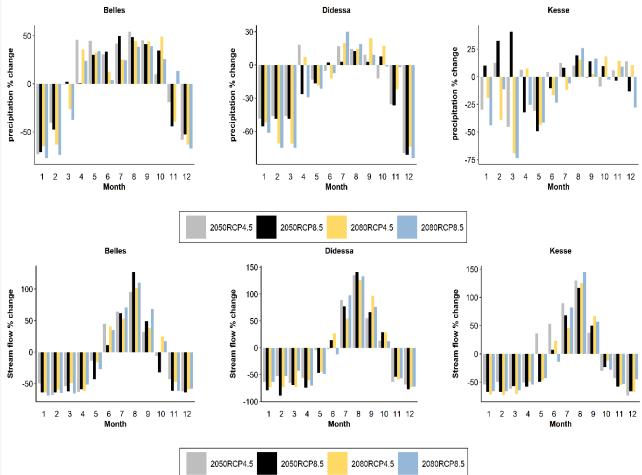
Subbasins	Kesse		Main Belles		Didessa	
	Calib	Valid	Calibration	Valid	Calib	Valid
Objective	(1992-	(1999-	(1992-	(1999-	(1992-	(1999-
functions	1998)	2003)	1998)	2003)	1998)	2003)
NSE	0.65	0.67	0.79	0.82	0.75	0.79
RMSE	0.47	0.49	0.33	0.34	0.48	0.47
MAE	0.46	0.40	0.20	0.28	0.30	0.44
R ²	0.67	0.69	0.8	0.83	0.75	0.79

Qsim(m³/s)



Comparison of peak flow and peak flow and runoff depth for evaluating mean annual flow volume relative to historical 2000

diz Bestsche Gesellischaft für Internationale Zesenverwerbeit (1972) 6


Future predicted mean monthly runoff in response to climate change in the basin.

Seasonal stream flow change in response to precipitation change

Conclusion & Recommendations

- Future rainy season (Jun-Aug) precipitation and accompanied runoff becomes highly augmented compared to historical.
- Ensemble mean use of multiple climate data sources and evidences could improve climate uncertainty and runoff prediction in the basin.
- Future wet season (Jun-Aug) flood forecasting and precaution for floodplain areas of the Nile basin should be consolidated.

