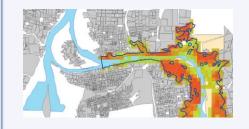


Eastern Nile Flood Forecast and Early Warning System Enhancement ^{Yilma Seleshi (Prof.)} Flood and Drought Risk Mitigation Project Coordinator,

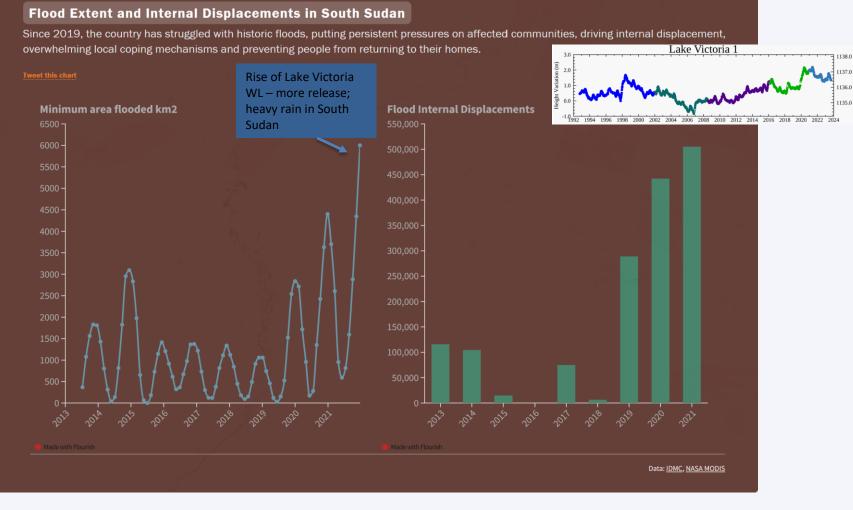


Outline

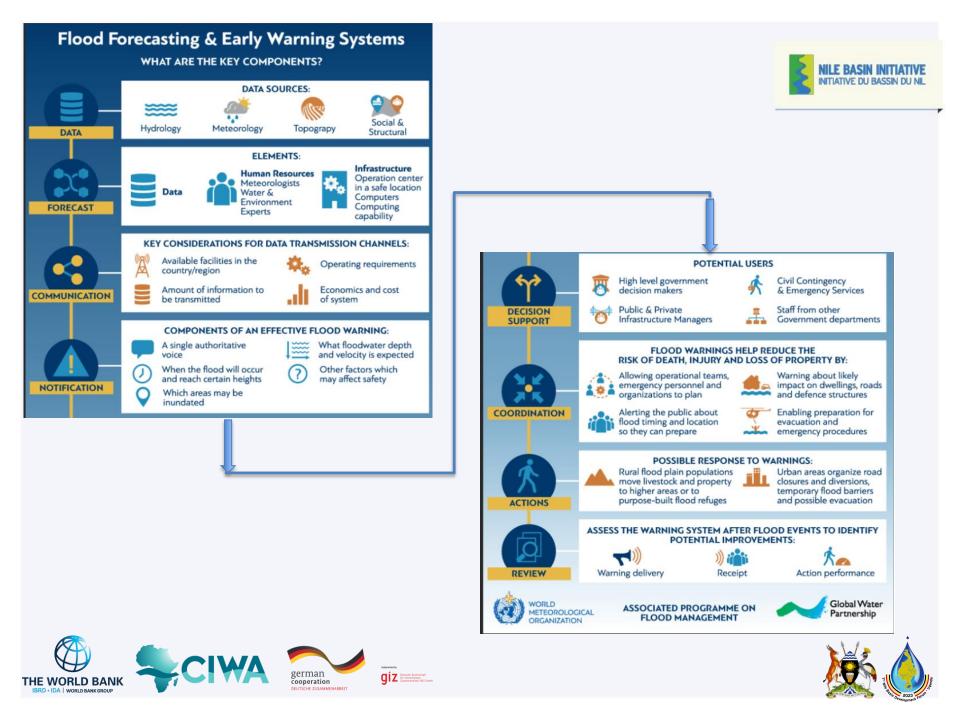
- 1. Major Flood Impacts in EN Countries
- 2. EN-FFEWS 2001-2023 Evolutions
- 3. The Current Flood Risk Mitigation Project (2021-2025) – Lesson learned
- 4. Challenges & Improvement Areas in FFEWS

Flood impacts regularly Nile countries livelihoods and economies

 1878, 1946 historic high flood records in Blue Nile 1988 (> 200 mm Khartoum and Blue Nile flood), Gambela 		2003 in Sudan: Major Impact on Irrigated Agriculture Sector; 115K Ha of Crops Damaged; 2412 Houses Damaged ; More than 250,000 families affected		2013 in South Sudan: Gambela and other towns which causes losses of many life and damage of properties; Flash flood Khartoum (15 K homes destroyed)		2016 in Egypt, Ethiopia: Baro river -Gambela flood plain and Sudan: Blue Nile sub basin; South Sudan flood		 2020 flood affected > 1.5 million peoples in <u>Ethiopia,</u> <u>South Sudan</u> and Sudan with 100 deaths costing > 24 Million USD in Sudan. Worst in 2022 in South Sudan
1876 / 1946/ 1988	1996/ 1998	2003	2006	2013	2014	2015/2016	2017	2020 / 2021/2022
	 1998 in Sudan Blue Nile: caused a direct flood damage of about US\$ 24.3 million 1996 Gambela 90 K people affected 		2006 in Ethiopia: 600 affected, more than 35K people homeless; Nile flood in Sudan		2014 in Sudan: 257 K people in ten states have been affected		2017 in Ethiopia – Lake Tana flood prone area , in some part of <u>South Sudan and</u> <u>Sudan</u> ; Sudan 55K people affected.	



Flood impacts regularly Nile countries livelihoods and economies



- The Nile basin is characterized by significant <u>spatial</u> and <u>temporal rainfall</u> and <u>water resources variability</u>, which is being amplified by climate change.
- Every year more than 0.5 million peoples' lives and livelihoods are affected by flood in the Eastern Nile countries of Egypt, Ethiopia, South Sudan and Sudan.
- Considering this flood impact, in March 2001, the Eastern Nile Council of Ministers (ENCOM) expressed their need to advance studies in Flood Forecast and Early Warning (EN-FFEW).

Institutional

- The Minsters agreed in the <u>Flood</u> <u>Preparedness and Early Warning</u> <u>Project</u> within Eastern Nile Subsidiary action program to take joint action on the problems of flood management in the EN.
- In October <u>2004</u>, ENCOM decided to fast-track the FPEW project to show tangible results of the Nile Basin collaboration on the ground by creating projects in <u>2006-2010</u> which focused on building the institutional capacity and developing critical baseline information to enhance the readiness of EN countries to implement subsequent FPEW project.

Institutional

2006-2010

- Component 1: <u>Regional coordination</u>: Putting in place an institutional mechanism for establishing intercountry coordination.
- Component 2: <u>Flood forecasting</u>
 <u>warning & communication system</u>:
 Aimed at improving flood forecasting
 institutions and developing a detailed
 design for EN flood forecasting,
 warning and communication system.
- Component 3: <u>Pilot flood preparedness</u>
 <u>& emergency response</u>: Strengthened
 flood preparedness and flood
 mitigation planning at different levels.

In 2020 the levels of the Nile in Khartoum were the highest recorded since 1912. Photo: lier4life/Shutterstock

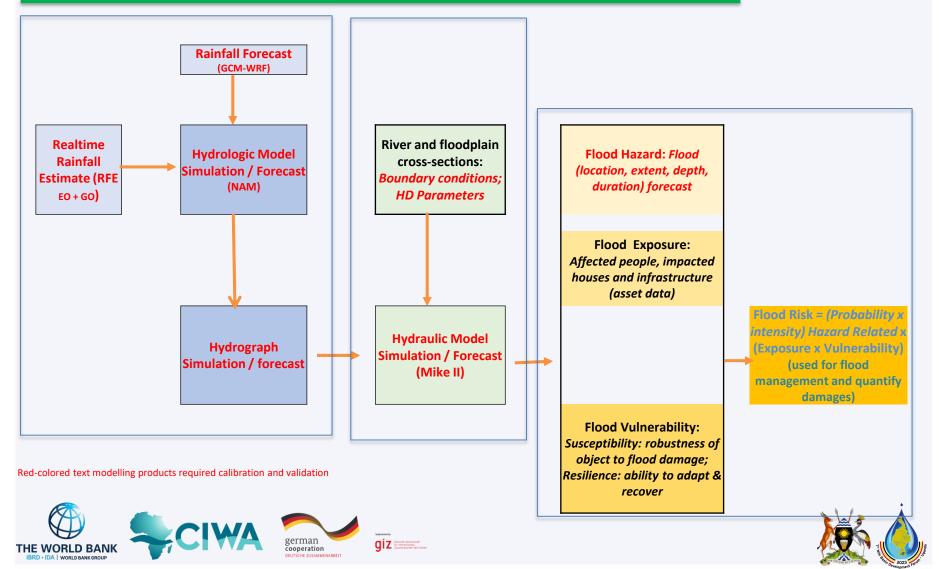
2011-2021(NCORE)

- Established the regional flood coordination unit at ENTRO and the National flood forecasting centers in the three EN countries;
- Developed real-time flood forecasting systems for Lake Tana floodplains in Ethiopia and the Blue/Main Nile River System in Sudan;
- Strengthened the Capability of the Nile Forecast Center in Egypt;
- Development of emergency response and preparedness plan for selected pilot communities;
- ENTRO Regular Activities: Flood Forecast (July-September) – has been daily issued at ENTRO since July 2010 with Interns from the Water Affairs Ministry of Ethiopia, Sudan and South Sudan

The Current Flood Risk Mitigation Project (2021-2025) – Lesson learned

Lesson Learned (LR): After more than a decade FFEW experiences still continuous enhancement are required in areas of:

- Flood prone areas surveying and Data Collection (topographic, infrastructure, socio-economic) – LR: *Expensive and challenging works & critical data for FRM*
- Enhancement of the Eastern Nile Flood Forecasting and Early Warning System – *LR* calibrating and validating rainfall forecast, flood forecast, hydrodynamic modelling and updating the Flood Risk Mapping is sustained task as technology and ground conditions varies with time.
- Focusing on the support that ENTRO provides in Establishing Flood Community Awareness and Preparedness is also critical (the final beneficials saving life and properties).



The Current Flood Risk Mitigation Project (2021-2025)

NILE BASIN INITIATIVE

Challenges and Improvement areas in FFEWS Rainfall

	t (Near Realtime satellite-based rainfall e for calibration)	Forecast (Mesoscale numerical weather prediction system)			
RFE (NOAA)	 Continuous calibration is required. Still the number of daily gauge observations incorporated into MSWEP are limited in the Nile basin. 	WRF (3-day ahead, hr time step, 6km x 6km)Continuous calibration is required.oExample: in Ethiopia, WRF the 1-day to 3-day lead-times forecast are reasonable reproduces the observed data. The low (no rain and light rain) and high (>16 mm/day) rainfall forecast detection capability of the WRF model was good.National 			
MSWEP (3hr time step, with latency of 3hr) NCAR	 The error propagates with positive linear relationship between errors in precipitation and simulated discharges (NANDING et al (2021) Assessment of Precipitation Error Propagation in Discharge Simulations over the Contiguous United States (DOI: 10.1175/JHM-D-20- 0213.1)) 	Research (NCAR)/pii/S2214581822002865)GFS (1 hr dt, 13km x 13 km resolution), National Centers for Environmental Prediction (NCEP)The GFS is run four times a day, producing forecasts up to 16 days in advance. It produces hourly forecast output for the first 120 hours, then 3 hourly for days 5-16. https://www.emc.ncep.noaa.gov/emc/ pages/numerical_forecast_systems/gfs.php			

Challenges and Improvement areas in FFEWS

Hydrology and hydrodynamic modelling ; way forward

Models /	Key issues (research	Challenges					
system	areas)	Concreduutes forecast of Q and water level is a function of the reliability of the modelling and					
Hydrological &	What are the	Generally: the forecast of Q and water level is a function of the reliability of the modelling and					
Hydraulic	<u>sources</u> of	forecast of rainfall, hydrology and hydraulic.					
Models	uncertainty in	The current challenges are:					
	flood hydrology /	Producing / acquiring data on:					
NAM / HEC-	hydraulics?	(a) Observed flood hydrographs and corresponding areal rainfall					
HMS		(b) Accuracy of rainfall forecast (WRF, up to 3-day lead time state of the knowledge)					
		(c) Updated river rating curves					
Mike II /	What are the	(d) Floodplain high resolution topographic maps (0.5m vertical and 5 m horizontal)					
HEC-RAS	greatest sources of	(e) Floodplain accurate asset and infrastructure maps with properties values, exposure					
	uncertainty in	and vulnerability spatially well quantified					
	modelling for flood						
	risk management?	linstitutional and capacity building					
		(a) Concise and relevant definition of early warning content, format and channel for all					
		level of stakeholders					
		(b) Well-established sustainable institution and their chains from forecast generation					
		and emergency decision generation up to the flood affected communities,					
		(c) Sustained actions on flood mitigation preparedness and emergency responses.					
	• It is recommended t	o conduct ensembles of forecasts of flood and including specifying the uncertainty of the forecast.					
Way forward	ay forward By varying rainfall forecast model, and / or by changing % key parameters that inducing uncer						
	and hydraulics.						
	• Enhanced awareness creation that the countries will gain more if they invest in a sustained way in flood forecasting,						
	flood mitigation preparedness and well planned and drilled emergency responses.						
	• The National FFC should build their capacity in individual (expert skill & knowledge,), organizational (regulations,						
	manuals, infrastructure,) and its enabling environment (national legislation, economic system that makes FFEW						
	demandable,)						

