

NILE BASIN WETLANDS STATUS REPORT

BY **GEORG PETERSEN**

Study context

- Nile Basin wetlands of transboundary significance: Inventory, Baseline Study and Framework
 Management Plan with a nested case study on the Sudd
 - Wetland mapping, inventory, atlas
 - Wetland hydraulic model development
 - Wetland ecosystem services assessment
 - Wetland biodiversity assessment
 - Wetland eflows assessment
 - Wetland management policies
 - Wetland framework management plan

plus Sudd diagnostic analysis study

Generation of knowledge of physical baseline conditions

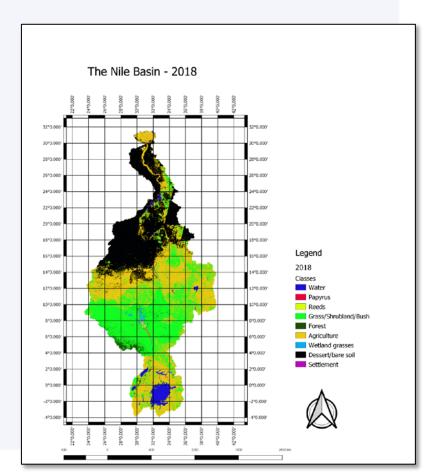
Deliverables

THE WORLD BANK

IBRD - IDA | WORLD BANK GROUP

•	0.1	Inception report	• 5.1	Technical Paper: eflow methodological approach
•	1.1	Technical Report inventory methodology	• 6.1	Technical paper: Description of policy choices
•	1.2	Inventory / Atlas	• 6.2	Technical Paper: Scenario study of management
•	1.3	Report on Wetlands Monitoring Guidance	- 4	options
•	1.4	Geo-spatial inventory database	• 7.1	Nile Basin Wetland Framework Management Plan
•	2.1	Hydraulic wetland models	• 8.1	Technical Report: Sudd Diagnostic Analysis Study
•	2.2	Technical Report wetland modelling	• 8.2	Technical Report: detailed eco-hydrological planning
•	2.3	Technical Paper wetland modelling and water budget		model for the Sudd
•	3.1	Ecosystem services assessment	• 8.3	Technical Report: Sudd Options Study
•	3.2a	Technical Report ecosystem assessment methodology	• 8.4	Technical Report: Sudd Wetland Management Strategy and Action Plan
•	3.2b	Inventory of baseline ecosystem services	• 9.1	Consultative workshops; Specialist meetings; TAC
•	4.1a	Technical Report: Biodiversity assessment		meeting
		methodology and baseline	• 9.2	Training / awareness sessions
•	4.1b	Inventory of baseline biodiversity	• 9.3	Six policy briefs / popular summaries
		assessment		3

Wetland mapping


Tasks

- Provision of high-quality land cover and land use information for the Nile basin (-> improving quality of the 2009 study)
 - √ 10m spatial resolution (compared to 30m in 2009) to provide more spatial detail
 - ✓ Separation of reeds, papyrus and flooded grassland to provide more thematic detail
 - ✓ Map production for 3 different epocs (±3 years): 1985, 2005 and 2015 to permit change analysis
- Further requirements
 - ✓ Data ready for GIS integration
 - ✓ Rigorous validation of final products
 - ✓ Transparent and objective methodology
 - ✓ Cost-efficient and repeatable methodology

Wetland mapping Sudd Wetlands - 2018 Example **Sudd 2018** Legend 2018 Classes Water Papyrus Reeds Grass/Shrubland/Bush Forest Agriculture Wetland grasses Desert/bare soil Settlement CIWA german cooperation 400 km

Wetland inventory

Nr	PhysFeat
Sub basin	GeomorphSoil
Wetland	Climate
WLGroup	Hydrology
Country	Water Quality
River/Lake	Biodiversity
Lat	Vegetation
Long	Fauna
Altitude	Birds
Area	Fish
Nearest Town	Class
Transboundary	PolicyFram
Ramsar	LandUse
IBA	Demography
	Ecosystem Services
	Drivers

Changes

Wetland atlas

NILE BASIN WETLAND ATLAS

Motivation

Chapter 1 - Introduction

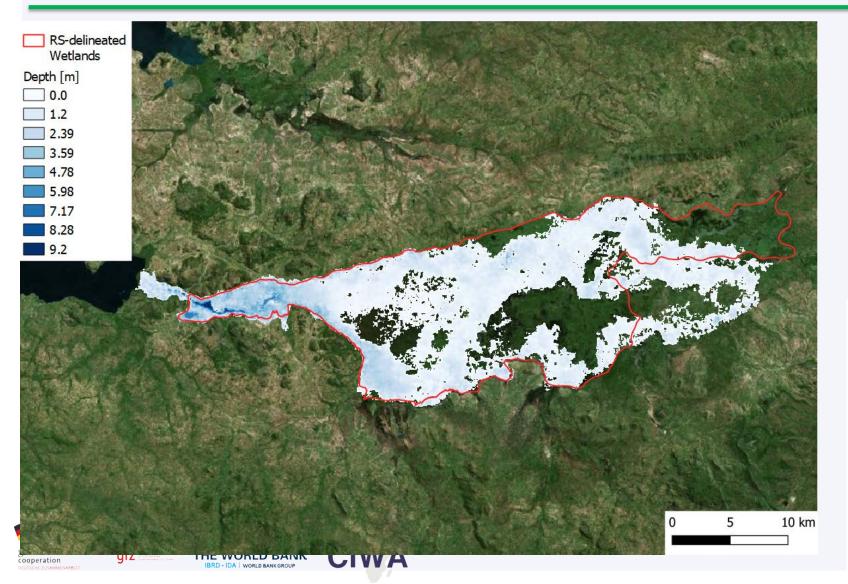
- Methods
- Nile Basin Initiative
- The importance of wetlands for the Nile Basin
- Wetland Extent per sub-basin
- Nile Basin land cover
- Nile Basin main wetland systems
- Wetland list
- Peatlands in the Nile Basin

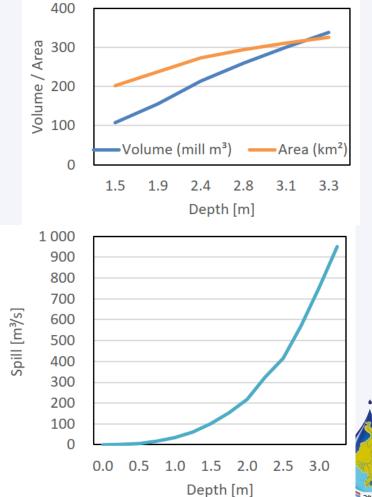
Chapter 2 - Lake Victoria Sub-basin

- Overview
- Introduction
- Sub-basin characteristics
 - Climate & hydrology
- - Wetland characteristics
 - Wetland population
 - Ecosystem services & wetland use
- Potentials and hotspots
- Management status & conclusion

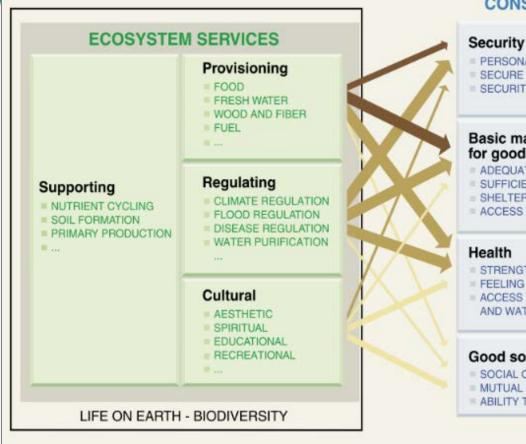
Chapter 3 - Victoria Nile Sub-basin

- Overview
- Introduction
- Sub-basin characteristics
 - Climate & hydrology
- - Wetland characteristics
 - Wetland population
 - Ecosystem services & wetland use
- Potentials and hotspots
- Management status & conclusion





Wetland modelling



Ecosystem services assessment

CONSTITUENTS OF WELL-BEING

PERSONAL SAFETY SECURE RESOURCE ACCESS

SECURITY FROM DISASTERS

Basic material for good life

- ADEQUATE LIVELIHOODS
- SUFFICIENT NUTRITIOUS FOOD
- SHELTER
- ACCESS TO GOODS

Health

- STRENGTH
- FEELING WELL
- ACCESS TO CLEAN AIR AND WATER

Good social relations

- SOCIAL COHESION
- MUTUAL RESPECT
- ABILITY TO HELP OTHERS

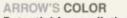
Freedom of choice

and action

OPPORTUNITY TO BE

ABLE TO ACHIEVE

WHAT AN INDIVIDUAL


VALUES DOING

AND BEING

Potential for mediation by socioeconomic factors

Low

Medium

Strona

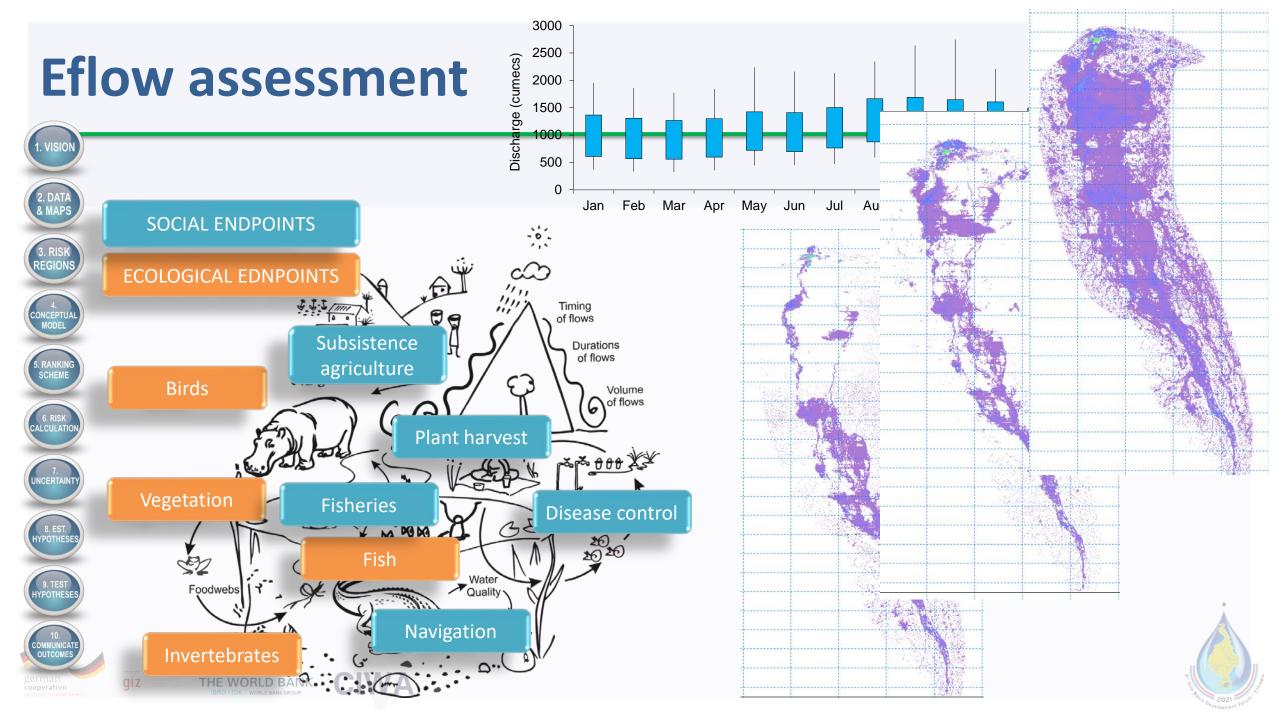
Medium

ARROW'S WIDTH

- Weak

Intensity of linkages between ecosystem

services and human well-being



Source: Millennium Ecosystem Assessment

Biodiversity assessment

	Critically				
	Endangere	Endangere	Near		Conservatio
Wetland:	d	d	Threatened Vu	Inerable	n Dependent
Bahr el Ghazal	3	5	13	11	5
Baro/Akobo Sobat Wetlands					
(Machar Marshes)	1	5	17	13	7
Dinder	4	4	16	13	5
Kagera	3	5	19	10	4
Lake Kyoga	3	7	18	9	3
Lake Tana	3	4	15	17	
Lake Victoria	58	20	37	49	5
Mara	47	8	16	31	2
Nile Delta	5	7	19	6	
Semliki	5	13	32	18	4 🗼
Sio Nzoia Yala Nyando	50	10	20	36	1
Sudd THE WORLD BANK CIWA	4	5	17	15	6

Management policies

Step 1:	Obtain direct output from DSS - daily / monthly timeseries for baseline and scenario flows
Step 2:	Conduct seasonality check
Step 3:	Use timeseries flow data to generate depth duration data
Step 4:	Integrate duration data with ecological matrix of rules to produce a
	vegetation response
Step 5:	Use ecological response to calculate ecosystem services output
Step 6:	Calculation of Wetland Integrity & optional Land Use Scenario Facility

PD-Base	eline								S	eason	ality I	ndex:	1.89
No Classes	12	1	2	3	4	5	6	7	8	9	10	11	12
	Depth Class	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
<	0.12	6	6	6	6	6	6	6	6	6	6	6	6
<	0.25	8	3	13	5	5	4	24	8	0	0	1	1
<	0.37	6	3		4	3	2	10	20	4	0	0	3
<	0.50	4	14	6			4		13	7	4	4	12
<	0.62	8	2	4		,			13	6	9	9	5
<	0.75	9	7	Y	4			-6	9	4	10	7	8
<	0.87	7	3	3	6	0	0	0	4	8	9	11	11
<	0.99	3	4	3	1	0	0	0	1	12	11	9	4
<	1.12	5	2	6	0	0	0	0	0	3	8	6	6
<	1.24	2	7	0	0	0	0	0	0	1	9	6	5
<	1.37	7	0	0	0	0	0	0	0	0	4	5	5
<	1.49	0	0	0	0	0	0	0	0	0	1	6	4
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		0.92	0.83	0.75	0.67	0.50	0.50	0.50	0.67	0.75	0.83	0.92	1.00
		W				D	D	D				W	W

STEP 3:					
1) Use daily / mo	onthly depth o	lata to generate o	lepth duration	data	
2) Do for all data	sets, baselin	e and scenarios			
PD-Base	eline	Scenario:	Drier	Scenario: V	Vetter
WaterLevel [m]	%	WaterLevel [m]	%	WaterLevel [m]	%
0	0 3		13	0,00	0,13
0	0.26		0.26	0,00	0,26
0	0,38	0 0	0,38	0,00	0,38
0	0,51	0,00	0,51	0,00	0,51
0	0,64	0,00	0,64	0,00	0,64
0	0,77	0,00	0,77	0,00	0,77
0	0,90	0,00	0,90	0,00	0,90
0	1,03	0,00	1,03	0,00	1,03
0	1,15	0,00	1,15	0,00	1,15
0	1,28	0,00	1,28	0,00	1,28

Table 2. Potential presence of ES (% of total area)			Relative change	(in %) in the pote	ential presence of ES co	ompare to PD-Baseline
Ecosystem service	VU	PD-Baseline	Scenario: Drier	Scenario: Wette	Scenario: Agriculture	Scenaria: HPP
Provisioning ES						
Change of ES1 (Fish)	1, 2, 3	24,1	-10,0	26,4	-3,1	50,9
Change of ES2 (Insects)	1-5	100,0	0,0	0,0	-40,0	-15,0
Change of ES3, ES7 (Wild Game, Fodder and Pasture)	1-6	100,0	0,0	0,0	0,0	0,0
Change of ES4 – ES6 (Fruits, Vegetables, Grains)	2-6	C+~59	4,1	-15,0	0,1	-45,9
Change of ES8 (Farmland)	2-5		0,0	26,4	-3,1	50,9
Change of ES9 (Fresh Water)	1-5	100,0	0,0	0,0	-40,0	-15,0
Change of ES10 (Fuel/Fiber/Raw Materials)	2-6	95,9	4,1	-15,0	0,1	-45,9
Change of ES11 (Medicinal Products)	2-5	95,9	4,1	-15,0	-39,9	-60,9
Change of ES12 (Genetic Materials)	1-5	100,0	0,0	0,0	-40,0	-15,0
Change of ES13 (Transport Infrastructure)	1, 4	29,1	5,9	5,9	-9,1	25,9

ſ		Time	R535/Water level [m]
	F 1	01/01/1950 00:0	0.7
l		01/02/1950 00:0	0.46416
l		01/03/1950 00:0	0,19669
l		01/04/1950 00:0	
l		01/05/1950 00:0	
l		01/06/1950 00:0	0.01883
		01/07/1950 00:0	0.18101
		01/08/1950 00:0	0.45578
		01/09/1950 00:0	1.25382
l		01/10/1950 00:0	1.44633
		01/12/1950 00:0	1.44633
l		01/01/1951 00:0	1.31993
ı		01/02/1951 00:0	1.20129
ı		01/03/1951 00:0	1.05314
l		01/04/1951 00:0	0.87902
l		01/05/1951 00:0	0.7135
l		01/06/1951 00:0	0.70387
ı		01/07/1951 00:0	0.71439
L		01 00 4071 00 0	0.0000

Response Rule	e Matrix								Inur	ndatio	n Du	ratio	ı (% \	ear)							
Depth (max fl	ood)	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
	0	TR	TR	TR	GR	GR	GR	GR	GR	GR	GR	GR	RE	PΑ							
Open Water	0.25	TR	TR	TR	GR	GR	GR	GR	GR	GR	GR	RE	RE	PA							
Aquatic	0.5	TR	TR	GR	GR	GR	GR	GR	GR	GR	GR	GR	GR	GR	GR	GR	GR	RE	RE	RE	P.
Veg	0.75	TR	GR	GR	GR	GR	GR		GR	GR	GR	GR	M	GR	GR	GR	RE	RE	PA	PA	P.
Fringe	1	TR	GR	GR	GR	GR	RE	1	E	R	Œ	RE	R	RE	RE	PA	PA	PA	PA	FR	FF
	1.25	GR	GR	GR	GR	GR	RE			W		PA	Р	PA	PA	PA	PA	PA	FR	FR	A
Papyrus	1.5	GR	GR	GR	RE	RE	PA	PA	PA	PA	PΑ	PA	PA	PA	PA	FR	FR	FR	FR	AQ	O١
Reeds	1.75	GR	GR	GR	PA	PA	PA	PA	PA	PA	PA	PA	FR	FR	FR	FR	FR	AQ	AQ		
Grass	2	GR	RE	RE	PA	PA	PA	FR	FR	FR	FR	FR	FR	AQ	AQ	AQ	AQ	AQ			
Floodpl	2.25	GR	RE	RE	PA	PA	FR	FR	FR	FR	AQ	AQ	AQ								
Trees	2.5	RE	RE	PA	PA	FR	FR														
Shrubs	2.75	RE	PA	PA	PA																
	3	RE	PA	PA	PA																

	Select Wetland:	Bahr_el_Ghazal											
	Select Scenario:	Integrity Calculator:		Baseline	(Land Us	e Data f	from 2018)						
Veg	PD-Baseline	Step		water	papyrus	reeds	shrubland	forest	agriculture	wetland_grasses	dessert_bare_soil	settlement	Total
	0	1	Area (Ha)	3013	6157	8269	218643	34496	1684	40176	0	18	312456
ΑQ	4.1	2	Area (%)	1.0	2.0	2.6	70.0	11.0	0.5	12.9	0.0	0.0	100.0
FR	5.0	3	Weightings	1.00	1.00	0.90	0.80	0.50	0.15	0.95	0.10	0.10	
PA	5.0	4	Individual Contribution	0.01	0.02	0.02	0.56	0.06	0.00	0.12	0.00	0.00	0.79
RE	10.0	5	Integrity Score		L _	-4		_					79.11
GR	25.0					П	7	7			Ecological	Category:	B/C
TR	50.9	Integrity Calculator:		le se	J	, ,	,	J					
	100.0	Step		water	papyrus	recels	shrubland	forest	agriculture	wetland_grasses	dessert_bare_soil	settlement	Total
		1	Area (Ha)	12819	31246	29683	141539	0	33088	62491	0	1590	312456
		2	Area (%)	4.1	10.0	9.5	45.3		10.6	20.0		0.5	100.0
		3	Weightings	1.00	1.00	0.75	0.60	0.50	0.15	1.00	0.10	0.05	
		4	Individual Contribution	0.04	0.10	0.07	0.27	0.00	0.02	0.20	0.00	0.00	0.70
		5	Integrity Score										70.02
											Ecological	Category:	С

Framework management plan

Introduction

- Status Quo
- Required Effort
- Need for Framework Management Plan

Part 1 – Wetlands of Transboundary Significance

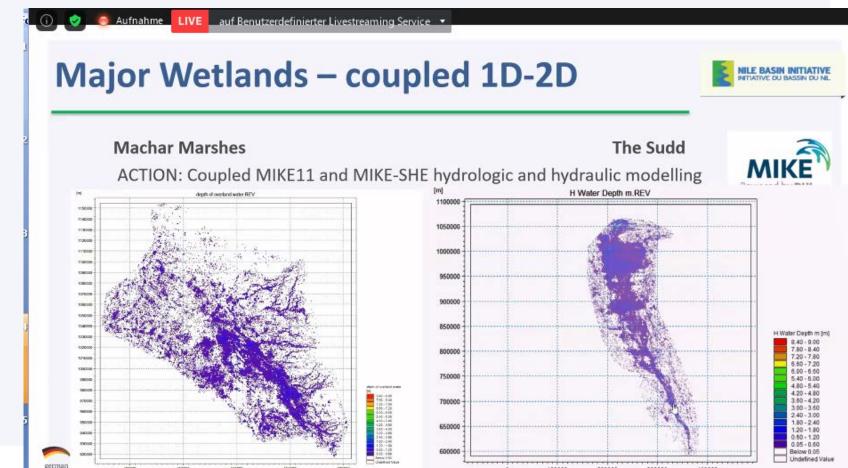
- Biophysical Status
- Guiding Principles
- Vision
- Purpose

- Scope

Part 2 – Strategic Action Areas

- Cross Border Wetland Management
- Climate Change Action
- Wetlands in Basin Planning
- Wetlands of Regional Significance
- Monitoring of Wetland Status
- Knowledge Management and Capacity Development
- Wetland Investment

Part 3 – Implementation Arrangements


- Governance
- Financial
- Monitoring

Sudd case study

- Reflection of all topics in more detail
- Detailed modelling
- Eflow assessment
- On-ground activities with stakeholders
- Wetland management planning support

