

SUDD WETLANDS DIAGNOSTIC ANALYSIS STUDY - PHYSICAL BASELINE

BY GEORG PETERSEN

Study context

- Nile Basin wetlands of transboundary significance: Inventory, Baseline Study and Framework Management Plan with a nested case study on the Sudd
 - Wetland mapping
 - Wetland inventory
 - Modelling wetland hydraulics
 - Wetland ecosystem services assessment
 - Wetland biodiversity assessment
 - Wetland eflows assessment
 - Wetland management policies
 - Wetland framework management plan

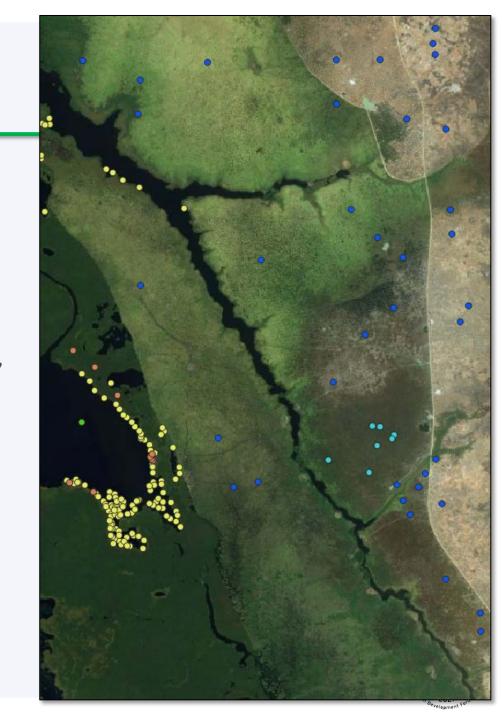
Generation of knowledge of physical baseline conditions

Physical baseline

- Wetland mapping
 - Based on Remote Sensing data
 - Resulting in different landcover classes
- Wetland inventory
 - Wetland structure/overview
 - Wetland knowledge database

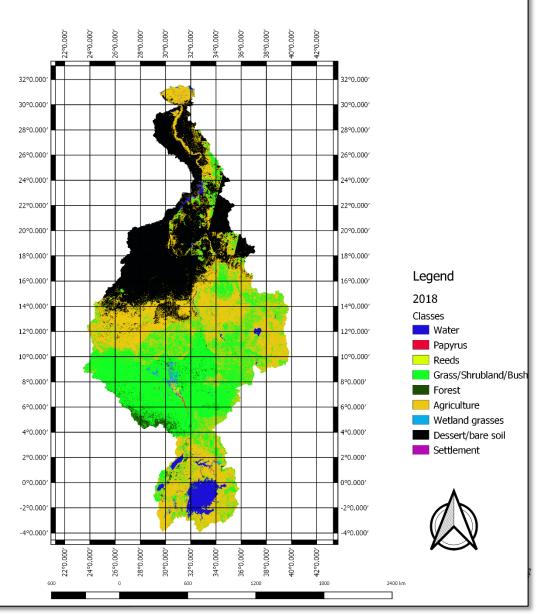
Wetland mapping objectives

- Provision of high-quality land cover and land use information for the Nile basin (-> improving quality of the 2009 study)
 - 10m spatial resolution (compared to 30m in 2009) to provide more spatial detail
 - Separation of reeds, papyrus and flooded grassland to provide more thematic detail
 - Map production for 3 different epocs (±3 years): 1985, 2005 and 2015 to permit change analysis
- Further requirements
 - Data ready for GIS integration
 - Rigorous validation of final products
 - Transparent and objective methodology
 - Cost-efficient and repeatable methodology



Wetland mapping methods

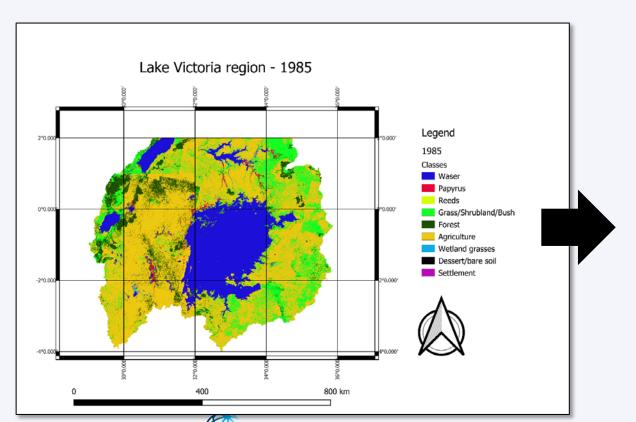
- Based on different satellite data: Landsat-5, Landsat-7,
 Sentinel-2
- Timestamps 1985, 2005, 2015
- 25,000 satellite images analyzed
- Big data: 14 billion pixels with values for each spectral band,
 each season and each year
- Ground control point collection for referencing/machine learning

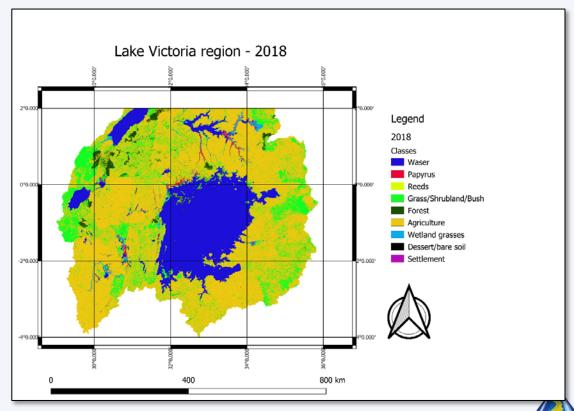


Wetland mapping results

- Entire Nile basin mapped in 10m resolution
- Nine different landcover classes mapped
- Accuracy depending on class

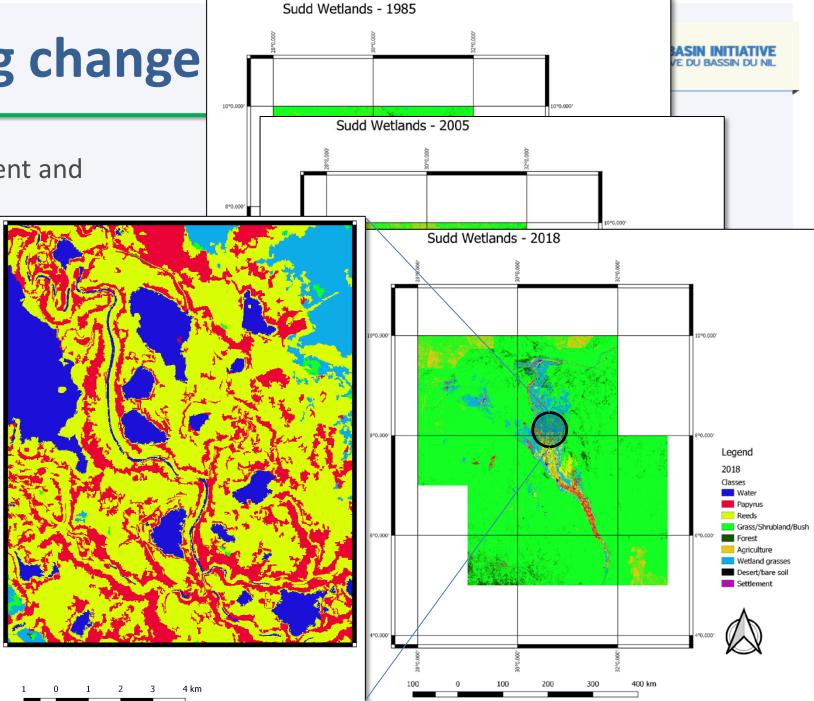
REFERENCES (n = 3,603)									
	Papyrus	Reeds	Wetland grasses	Grass/Shrub	Forest	Agriculture	Water		
Papyrus	396	43	3	5	1	13	6		
Reeds	132	208	7	15	2	14	8		
Wetland grasses	56	18	326	3	2	38	2		
Grass/Shrub	6	4	5	345	17	26	0		
Forest	7	1	4	3	275	40	2		
Agriculture	0	0	18	3	7	1030	1		
Water	31	11	1	0	0	1	467		
24/9/3		73.0	00.5		00.5	00.5	0.4		
PA(%)	63,1	73,0	89,6	92,2	90,5	88,6	96,1		





Wetland mapping change analysis

Example for Lake Victoria, 1985 -> 2015



Wetland mapping change

E.g. change analysis wetland extent and

change in plant composition

E.g. morphological studies (channel dynamics)

Wetland inventory objectives

 To provide a knowledge base for an ecosystem approach to sustainable management of wetlands of transboundary relevance in the Nile Basin.

-> Base for educated decisionmaking

Wetland inventory methods

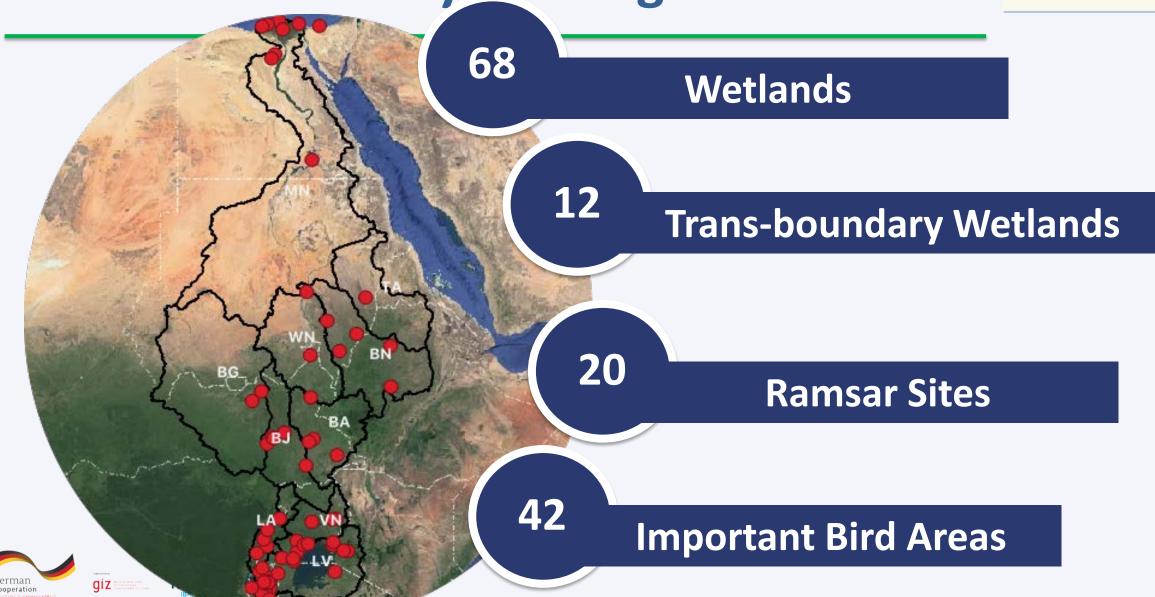
Based on RAMSAR approach

Ramsar core wetland inventory fields	NB inventory fields
Site name:	Sub-basin name
Official name of site and catchment/other identifier(s)	Wetland group
	Wetland (site) name
	Overview (narrative)
Area, boundary and dimensions:	Country or countries
Site shape (cross-section and plan view), boundaries, area, area of water/wet area	Coordinates
(seasonal max/min where relevant), length, width, depth (seasonal max/min where	Area
relevant)	Nearest Town(s)
Location:	Maps
Projection system, map coordinates, map centroid, elevation	Altitude
Geomorphic setting:	Physical features
Setting in the landscape/catchment/river basin - including altitude, upper/lower zone of	Wetland Classification
catchment, distance to coast where relevant, etc.	
Biogeographical region:	Physical features
	Wetland Classification
Climate:	Physical features
Overview of prevailing climate type, zone and precipitation, temperature, wind	
Water regime:	Physical features
Water source (surface and groundwater), inflow/outflow, evaporation, flooding frequency,	

seasonality and duration; magnitude of flow and/or tidal regime, links with groundwater

Wetland inventory results

Database structure


THE WORLD B

۷r	Subbasin	Nar	ne		W	LGroup		Cour	ntry		R	iver/I	Lake	е	Lat		Long	
	LV	Nya	Nyando		SNYN WL 1 Kenya		а		Nyando River			er	-1°42'44"		34	4°51'57		
2	LV	Yala Swamp		SN	IYN WL 2	Kenya			Yala River			0°2'42"		;	34°2'26			
3	LV	Nzoi	ia Rive	er	SN	IYN WL 3		Keny	а		Nzoia River			0°4'29''		33°58'48"		
ļ	LV	Sio	Siteko)	SN	IYN WL 4	1	Keny	а		Si	o/Site	eko I	River	0°	14'48''	;	34°0'55
5	LV	Mar	ra Mat	tland	N/ a	ara M/I	Vegetation	Tanz	ania/	Ken	/2 2 	الم الأر	tori	2	_2°	28'51"	Change Injections	34°7'10
		Name	Mina M. (4), 2015	Recipios et al., 2014 6 those of al., 2015 Male all al., 2015 Februar et al., 2011	Ample of pt., 2008 Ampl., 2008. Implian at at., 2002;	Songari et al., 2014 Sungari & Data, 2016	Benneral 1004	Fusterburg 1009	Stration on a strain of the st	Serasa et at., 2016;		Nations et al., 2013		Selves et al., 2012	Species at at 2005; features at 2015	1/96, 3011. Desta-Chette et al., 2008. Ones et al., 2013. Van Dem et al., 2013. Theme & figure, 2017.	Shape of all 2015. Onatro-Olistos et al., 2018	
57	MN	Natural Vision	G		Mayaresul, 2005. Salah et al., 2009.	Birth to transpored, 2015; MIL 2000 Standing Real			Smithigh (2019)	Angovinda en al., 2013		NR, 2029 (Balance Rep.)			Nation of al., 2012	MBM, JOLE		
58	MN	Many Workson		matterps, 2001. Doi: 2011	Sario, 2013; Do. 2013; Specing, 2013	Municipal, 2007. Smill-Review Local, 2009	Murate et et ., 2013. Sedio, 2011		Smiths Improvious, 2028				Mango et et., 2011, 176C 2218	1/90, 2016; 646/man, 2007; 885, 2012, 2014	USHID, 2016. 1/19C, 2016	Manager at 2012		
		erode National Park opposits Finer duringer Nove Parintge Assertative rysige du famili	Sought, 2018	Authoria, 2013a	NEMA, JUST	Brid/A International, 2005 Ruligata, 2015a Inglies S. Hugles, 2015 Ruligate, 2015b Registeries, 2007			Brotifie treampooral, 2018 Seef, Fe treampooral, 2018 Necessaries & Management, 2008 Seef, Fe		Autogune, 2013a	Anhapria, 2013a Anhapria, 2013a	Sugnature, 2007					

Wetland inventory coverage

Wetland inventory database

Nr	PhysFeat	
Sub basin	GeomorphSoil	
Wetland	Climate	
WLGroup	Hydrology	
Country	Water Quality	
River/Lake	Biodiversity	
Lat	Vegetation	
Long	Fauna	
Altitude	Birds	
Area	Fish	
Nearest Town	Class	
Transboundary	PolicyFram	
Ramsar	LandUse	
IBA	Demography	
	Ecosystem Services	
	Drivers	

Changes

Wetland inventory database

Full Peference

Shacin W. Group

Type of Document

Literature database

	Full Reference	Author	Year	Type of Document	Sbasin	WLGroup	ľ
	Wilusz, D. C., Zaitchik, B. F., Anderson, M. C., Hain, C. R., Yilmaz, M. T., & Mladenova, I. E. (2017). Monthly flooded area classification using low resolution SAR imagery in the Sudd wetland from 2007 to 2011. Remote Sensing of Environment, 194, 205–218.	Wilusz et al.	2017	Scientific Publication	BJ	Sudd	
	Petersen, G., Bast, H., & Fohrer, N. (2008). Estimation of ungauged Bahr el Jebel flows based on upstream water levels and large scale spatial rainfall data. Advances in Geosciences, 18, 9–13.	Petersen et al.	2008	Scientific Publication	ВЈ	Sudd	
	Mohamed, Y., & Savenije, H. H. G. (2014). Impact of climate variability on the hydrology of the Sudd wetland: Signals derived from long term (1900-2000) water balance computations. Wetlands Ecology and Management, 22, 191–198.	Mohamed & Savenije	2014	Scientific Publication	BJ	Sudd	
	Mohamed, Y. A., Van Den Hurk, B. J. J. M., Savenije, H. H. G., & Bastiaanssen, W. G. M. (2005). Impact of the Sudd wetland on the Nile hydroclimatology. Water Resources Research, 41(8), 1–14.	Mohamed et al.	2005	Scientific Publication	BJ	Sudd	
\mathcal{K}	Petersen, G., Sutcliffe, J.V., & Fohrer, N. (2008). Morphological analysis of the Sudd region using land survey and remote sensing data. Earth Surface Processes and	Petersen et al.	2008	Scientific Publication	ВЈ	Sudd	

Author

Wetland inventory database

Individual wetland

41. The Sudd

Name: The Sudd

Country: South Sudan

Coordinates: 6°48'14"N / 31°11'51"E

Altitude: 448 – 394 m a.s.l.

Area: 23,633 km²

Nearest Towns: Juba, Mongalla, Malakal

International Importance: Ramsar Site, IBA

Each wetland Descriptions includes:

Physical features

Water regime

Classification

Management status

Land Use and Land Cover

Example: Physical features of the Sudd: Climate

- General description of the wetland area
- Chapter on hydrology of the Sudd
 - Wet season: May and October
 - Dry season: November and April
 - Average rainfall 700-1000 mm/year (NBI, 2016)
 - Significant year to year variation (Wilusz et al., 2017)
 - Evapotranspiration 1200 -1500 mm/year (NBI,2016)
 - Evapotranspiration deficit from August to April (Rebelo et al., 2012)

Example: Physical features of the Sudd: Hydrology

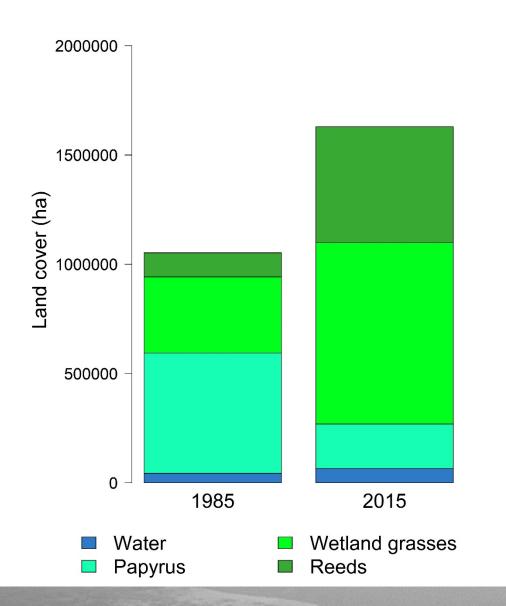
- Climate variations upstream of the Sudd and changing water levels of the Lakes Victoria, Kyoga, Edward and George are the main drivers of the wetland hydrology.
- Half of the Bahr al Jebel flow evaporates on its course through the Sudd (J. Sutcliffe & Brown, 2018)
 - Inflow: 49.2 km³
 - Outflow: 20.8 km³ (Data from 1961-83)
- 7% of the Bahr el Jebel flow moves though swamps and lagoons 93
 % flows in a network of channels (Petersen et al., 2008)

Example: Classification of the Sudd

Inland Wetland

- N Seasonal/intermittent/irregular rivers/streams/creeks
- M Permanent rivers/streams/creeks
- P Seasonal/intermittent freshwater lakes (over 8 ha); includes floodplain lakes
- O Permanent freshwater lakes (over 8 ha)
- Tp Permanent freshwater marshes/pools
- Ts Seasonal/intermittent freshwater marshes/pools on inorganic soils
- **U** Non-forested peatland

Example: Management Status of the Sudd


Management/ Protection Status of all wetlands was assessed, using the UNEP and IUCN World Database on Protected Areas

available at: https://www.protectedplanet.net/c/world-database-on-protected-areas
Table 1 Protected area fully or partly within the Sudd wetland boundaries

Name	Type*	Designation Year
Badingilo	National Park (II)	1986
Shambe	National Park (II)	1985
Ez Zeraf	Game Reserve (VI)	1939
Fanyikang	Game Reserve (VI)	1939

^{*}Number in brackets refers to the IUCN management categories. Strict Nature Reserve (Ib), Wilderness area (Ib), National Park (II), Natural monument or feature (III), Habitat/species management area (IV), Protected landscape (V), Protected area with sustainable use of natural resources (VI)

Example: Land cover – The Sudd

Land Cover Class	1985 (ha)	2015 (ha)	Change 1985-2015 (%)
Water	43,589	66,203	51.9
Papyrus	550,021	203,171	-63.1
Wetland grasses	348,482	829,792	138.1
Reeds	110,340	529,912	380.3
Total area	2,390,265	2,390,265	0.0

Wetlands inventory coverage

- Based on available data
- Structure allows periodic updating
- Data coverage heterogeneous, good coverage in areas of high economic interest
- Data gaps
- Future updates to be scheduled or structure to be implemented to allow for life updating including quality control

