

Machar Marshes Eco-Hydrology Study

GEORG PETERSEN

Study objectives

- Machar Marshes Eco-Hydrology Study
 - Baseline assessment of water balance dynamics
 - Watershed schematization
 - Remote sensing to delineate wetland extent
 - Development of the water balance model and incorporate into the NileDSS
 - Development of the 2D Hydraulic model and incorporate into NileDSS
 - Assessment of ecosystem aspects
 - Establishment of the environmental flow requirements

The Machar Marshes

- Part of the Baro-Akobo-Sobat (BAS) system
 - vast and complex river- and wetland network
 - including a wide expanse of floodplains

- Soils from SoilGrids , 250m resolution
- Vegetation cover from CCI Landcover 20m, and current Nile Wetlands study, 10m
- Detailed stream network, digitized
- Discharge data available from previous studies, 10daily temporal averages
- Actual evapotranspiration (AET): MODIS (2000-2013), 250m resolution, and FAO WaPOR (2009-2018), 250m
- Potential evapotranspiration (PET): Calculated from Princeton climate data based on the Hargreaves method
- Rainfall: CHIRPS (1981-near real-time), 5km resolution; Princeton5, 25km resolution
- Soil moisture: ESA CCI (1978-2018), 25km resolution and TerraClimate (1958-2019)
- Inundation: ENTRO flood monitoring website

Digital Elevation Model (DEM) MERIT, 90m and Airbus WorldDEM Topographic data

Watershed schematization

- DEM to identify catchment
- BAS-MWRD max Wetland extent
- Google Earth images

Wetland extent

ILE BASIN INITIATIVE

- Remote sensing approach
- Extent from FAO WaPOR AET
- Average Machar Marshes extent
- $= 6.947 \text{km}^2$

qiz

german

cooperation

Water balance model

- Conceptual model
- Mike SHE model setup
- Xxxx

Model runs / scenarios

- OPTION 1: "Precautionary Principle" scenario, with reduced but significant irrigation areas (smallscale / large-scale) and with no encroachment into environmentally sensitive areas.
- OPTION 2: as per the Option 1 scenario above, but in this case, the Tams Dam and Birbir Dam are included.
- OPTION 3a: Intermediate case, similar to Scenario 2, but with environmental water releases imposed on all dams in order to conserve natural flow patterns.
- OPTION 3b: Intermediate case, similar to Scenario 4a, but with environmental water releases imposed on all dams in order to conserve natural flow patterns
- OPTION 4a: Full-development case, with Tams Dam operated to maximise hydropower production.
- OPTION 4b: Full-development case, with Tams Dam operated to optimise irrigation and flood control
- Xxxx

- MIKE SHE model implemented for the Machar Marshes
- MIKE 11 (1D) model implemented in order to represent the flow dynamics in the main watercourses
- MIKE 11 model provides water input into the MIKE SHE domain when the water in the channels spills out of the banks
- Gridded domain in MIKE SHE provides overland water input into the defined channels
- MIKE SHE MIKE 11 coupled model calibrated against satellite data and against observed discharge values in several stations in the study area.

Modelling results - flow

Biodiversity

Overview of biodiversity generated

Wetland integrity		Integrity Scores	NILE BASIN INITIATIVE
	Wetland	2018	A/B >88 - <= 92 B >82 - <=88
	Bahr_el_Ghazal	0.79	B/C >78 - <=82
 Good wetland integrity score 	Dinder_Floodplain	0.50	C >62 - <=78 C/D >58 - <=62
	Kagera_Swamps	0.96	D >42 - <=58
	Kyoga_Kwania_Swamp_Complex	0.93	E 20 - <=38
	Lake_Edward	0.98	F <20
	Lake_George	0.93	
	Lake_Tana	0.97	
	Machar Marshes	0.78	
	Mara_Wetland	0.76	
	Nyando	0.65	
	Nzoia_River	0.76	
	Semliki_Valley_Wetlands	0.67	
	Sio_Siteko	0.40	•
	Sudd	0.87	
	The_Nile_Delta	0.35	
	Yala Swamp	0.78	Build Development Forus

Eco-rule matrix for eflows analysis

cooperation

Established most favourable condition combinations for different plant species

Depth (max	Inundation Duration (% Year)																			
flood)	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
0	TR	TR	TR	TR	GR	GR	GR	GR	GR	GR	GR	GR	GR	GR	GR	GR	GR	RE	RE	PA
0.25	TR	TR	TR	GR	GR	GR	GR	GR	GR	GR	GR	GR	GR	RE	RE	RE	RE	RE	RE	PA
0.5	TR	TR	GR	GR	GR	RE	RE	RE	PA											
0.75	TR	GR	GR	GR	GR	RE	RE	PA												
1	TR	GR	GR	GR	GR	RE	PA	FR	FR	FR										
1.25	GR	GR	GR	GR	GR	RE	PA	FR	FR	FR	FR	FR	AQ							
1.5	GR	GR	GR	RE	RE	PA	FR	FR	FR	AQ	AQ	AQ	AQ	OW						
1.75	GR	GR	GR	PA	PA	PA	PA	PA	PA	PA	FR	FR	AQ	AQ	AQ	AQ	AQ	AQ	OW	OW
2	GR	RE	RE	PA	PA	PA	FR	FR	FR	FR	FR	AQ	AQ	AQ	AQ	AQ	AQ	OW	OW	OW
2.25	GR	RE	RE	PA	PA	FR	FR	FR	AQ	OW	OW	OW	OW	OW						
2.5	RE	RE	PA	PA	FR	AQ	OW													
2.75	RE	PA	PA	PA	OW	OW	OW	OW	OW	OW	OW	OW	OW	OW	OW	OW	OW	OW	OW	OW
3	RE	PA	PA	PA	OW	OW	OW	OW	OW	OW	OW	OW	OW	OW	OW	OW	OW	OW	OW	OW
Days	WORLD BANK GROUP 18.25	37	55	73	91	110	128	146	164	183	201	219	237	256	274	292	310	329	347	365

