

Hydrological Response to Climate Change of the Blue Nile River Basin

Sintayehu Legesse Gebre

(Assistant professor in Water resources engineering and Hydrology at Jimma University, Ethiopia and PhD researcher at KU Leuven University, Belgium) Email:sintayehulegesse@gmail.com/sintayehulegesse.gebre@kuleuven.be

Climate change

- refers to the change in the state of climate variables.
- the expected/projected temperature shows rise of 1.4 to 5.8°C
 by 2100 (IPCC, 2007).
- the change in climate cause significant impact on the water resource by disturbing the normal hydrological cycle.
- the IPCC findings indicates that developing countries like
 Ethiopia will more vulnerable to climate change.

Drought impacts

CIWA

german cooperation

Flood impacts

To evaluate the potential hydrological response to climate change at 2030's (2035-2064) and at 2070's (2071-2100) on the Upper Blue Nile basin under RCP's scenarios.
 Objective of this study was to evaluate the potential hydrological response to climate change at 2030's (2035-2064) and at 2070's (2071-2100) on the Upper Blue Nile basin under RCP's scenarios.

Study area

•The **Upper Blue Nile Basin** is located in northwestern Ethiopia (latitude 10.95° and 12.78°N, and longitude 36.89° and 38.25°E) with a drainage area of about **15,000 km**²

•The major rivers feeding the Lake Tana are Gilgel

Abay, Gumera, Ribb, and Megech.

•The mean annula rainfall is around

1465mm,maximum temperature is 26 °C and minimum temperature 11 °C.

• Blue Nile River has an average of annual runoff of about 52 BCM at the Eth-Sudan border.

Study area cont...

• Gauging and weather stations

THE WORLD BANK

D . IDA WORLD BANK GROUP

CIWA

german

cooperation

qiz

Data and methods

- Arc-GIS 10.2
- HEC-HMS 3.5 hydrological model software
- Global mapper software
- SRTM 90m DEM data
- Hydrological and metrological data
- CMIP5 of RCP 4.5 and RCP 8.5 emission scenario climate data.
- Standard tables & Charts

Results and Discussion

Outputs of GCM's

* Base Period (1971-2005)

Precipitation and PET

The long term monthly average daily arial pptn of the GCMs and the weighted observed pptn indicated that $R^2=0.96$

Precipitation

NILE BASIN INITIATIVE

INITIATIVE DU BASSIN DU NI

Potential Evapotranspiration(PET)

Scenario Developed for the Future 2030's (2035-2064) and 2070's (2071-2100)

Precipitation Scenario

- •The long term average monthly percentage change of precipitation with respect to the base period, multimodal GCM at 2030's and 2070's indicates that a great percentage change during the dry months is exhibited.
- At 2070`s maximum precipitation change projected during the month of October ranging from +71.4% to +255.2%.
- Generally the mean monthly and seasonal precipitation increases in both future periods under both RCPs emission scenarios over the basin.

Mean monthly and seasonal multimodal projected percentage change of pptn from the base line level

Average change in between -20% and +30 %

NILE BASIN INITIATIVE

INITIATIVE DU BASSIN DU N

Future Temperature Scenarios

Average annual max Temp. increases up to +3.9 °c for RCP 4.5 & 7.1°c for RCP

8.5

german

cooperation

qiz

Future Temperature Scenarios

Average mini Temp increases up to 4.5 °c for RCP 4.5 and 8.4 °c for RCP 8.5

german

cooperation

qiz

Future Potential Evapotranspiration(PET)

Average changes in between -3.4 % and +7% for RCP 4.5 -7.8% and + 16.7% for RCP 8.5

HEC-HMS_ Model Calibration(1988-2000)

The Nash- Sutcliffe model simulation efficiency (NS), is on average greater than 0.5, the R² is also greater than 0.5, which is acceptable.

THE WORLD BANK

D . IDA WORLD BANK GROUP

german

cooperation

giz

HEC-HMS_Model validation (2001-2005)

german

cooperation

Future runoff

Average Runoff projection based on five GCMs model projections At 2030's increases up to +55.7 % for RCP4.5 & +74.8% for RCP 8.5 At 2070's increases up to +73.5 % for RCP 4.5 & +127% for RCP 8.5

Conclusions

At 2030`s and 2070`s

precipitation
temperature
potential evapotranspiration &
annual runoff increases

In general, future water resources availability of the basin increases and would meet the future water development demand with a planned strategy.

Integrated action towards transboundary cooperation for sustainable water development and environmental sustainability is important!!

