

Application of Climate Risk Assessment Protocol: Case Study the Borenga Dam

The Problem

- The climate is changing
- Climate change threatens the ability of engineers to safely and effectively design resilient infrastructure
- Design, operation and maintenance practices must adapt considering the life-cycle of the infrastructure
- Climate change engineering vulnerability assessment can help with adaptation process

https://www.economist.com/middle-east-and-africa/2007/05/10/drying-up-and-flooding-out

Building infrastructure today without considering future climate impacts is incorporating vulnerabilities that will later cause service disruptions and failures thus increasing costs to government, the private sector and users.

The PIEVC Protocol... a risk screening tool

- A tool derived from standard risk management methodologies
- PIEVC established in 2005, the PIEVC Protocol was first applied to an infrastructure project in 2007
- Applied to 50+ vulnerability assessments of infrastructure case studies in Canada, Costa Rica, Brazil, Vietnam, Honduras ... and now for the NBI countries.
- Intended for use by qualified professionals
- Requires contributions from those with pertinent local knowledge and experience

The PIEVC Protocol

The PIEVC Assessment Team & Assessment Approach

A CLIMATE PROOF NBI PROJECT STREAM

KEY ENTRY POINTS FOI

NELSAP-CU NILE BASIN INITIATIVE INITIATIVE DU BASSIN DU NIL

Introducing Borenga Dam Project

Project Components Layout

NELSAP-CU NILE BASIN INITIATIVE INITIATIVE DU BASSIN DU NIL

BORENGA DAM LAYOUT

Borenga Dam – Salient Features

Embankment (Crest) length	632m
Dam Height	22m from the original river bed
Storage Capacity	16 MCM
Maximum power output at design head	2.80 MW
Turbine	S - type Kaplan
Annual production	12.6 GWh

System	Co	mponent
Physical structure	Gated spillway	Main canal
	Intake for irrigation	Free overflow spillway
	Weir	Powerhouse
	Turbine	Dam crest
	Downstream face of the dam	Water treatment plant
	Upstream face of the dam	Intake for hydropower
	Access road	Power supply facilities
Functional services	Water supply	Drought mitigation
	Irrigation	Fisheries
	Hydropower	Transportation service
	Flood mitigation	
Operation	Monitoring of water levels	Flushing sediments during low flows
	Releasing flood during high flows	
Construction components	Coffer dam	Diversion channel
	Spillway	Embankments

We applied the Risk assessment in all the infrastructure components by using the below equation:

 $R = P \times S$

Where: R = Risk

P = Probability of the interaction

- S = Severity of the interaction
- Risk Tolerance Thresholds

THE RISK MATRIX

	7	7	14	21	28	35	42	49
	6	6	12	18	24	30	36	42
	5	5	10	15	20	25	30	35
lence	4	4	8	12	16	20	24	28
nbəsu	3	3	6	9	12	15	18	21
S	2	2	4	6	8	10	12	14
	1	1	2	3	4	5	6	7
		1	2	3	4	5	6	7

Probability of Occurrence

Risk Range	Threshold	Response
< 9	Low Risk	No immediate action necessary
12 – 35	Medium Risk	Action may be required , Engineering analysis may be required
> 36	High Risk	Immediate action required
24/03/2021	=== == ==	

Probability scale factors

Scale	Probability			
	Method A	Method B	Method C	
0	Negligible or not applicable	< 0.1% or < 0.1/20	Negligible or not applicable	
1	Improbable / Highly Unlikely	5% or 1/20	Improbable 1:1 000 000	
2	Remote	20% or 4/20	Remote 1:100 000	
3	Occasional	35% or 7/20	Occasional 1: 10 000	
4	Moderate / Possible	50% or 10/20	Moderate 1:1 000	
5	Often	65% or 13/20	Probable 1:100	
6	Probable	80% or 16/20	Frequent 1:10	
7	Certain/Highly Probable	> 95% or >19/20	Continuous 1:1	

Data Analysis and Process: DSS + CHIRPS + Years

Climate Variable	Observed Days / year	Projected Days / year	Projected Days / year
	1973 - 2008	2036 - 2065	2066 - 2095
High temperature :			
Number of days with a maximum temperature > 38°C	0	0	0
Number of days with a maximum temperature > 29°C	0,18		
Number of days with a maximum temperature > 25°C	0,71		
Low temperature:			
Number of days with a minimum temperature $< 10^{\circ}$ C	0,02	0	0
Number of days with a minimum temperature $< 5^{\circ}C$	0		
Number of days with a minimum temperature < 18°C during 2036-2065		0,07	0,01
Heavy Annual Rainfall:			
Number of days with annual rainfall > 900 mm at Keekorouk	0,65	0,89	0,95
Hydrological parameters:			
Extreme flood (Probable Maximum Flood, Flow of 8,000 m3/sec)	0	0	0
Safety check flood (10,000 year flood, Flow of 3,000 m3/sec)			
Design flood (Flow of 2,000 m3/sec)			
5 year flood (Flow of 550 m3/sec)			
Dead storage availability (less than 11 mt/year sediment load in Boregna's reservoir)			
 	0		

___/_-

Climate Variable	Component
High temperature :	Gate Hoist Mechanism, Power Supply Facilities, Backup
Number of days with a maximum temperature > 38°C	Power Supply, Generators, SCADA System, Switch Yard, High Tension Cables, Transmission Towers, Access Roads
Number of days with a maximum temperature > 29°C	supplies delivery, operations (Personnel),
Number of days with a maximum temperature $> 25^{\circ}C$	
Low temperature:	
Number of days with a minimum temperature $< 10^{\circ}$ C	Radial Gate Bearings, Monitoring Water Levels (auto and
Number of days with a minimum temperature $< 5^{\circ}C$	manual), Maintenance Systems & Procedures, Dam
Number of days with a minimum temperature < 18°C during 2036-2065	Control/Monitoring Systems
Heavy Annual Rainfall:	
Number of days with annual rainfall > 900 mm at Keekorouk	Personnel, Telephone, Telemetry, Control/Monitoring Systems
Hydrological parameters:	
Extreme flood (Probable Maximum Flood, Flow of 8,000	All Dam infrastructure components
m3/sec)All	
Safety check flood (10,000 year flood, Flow of 3,000 m3/sec)	
Design flood (Flow of 2,000 m3/sec)	
5 year flood (Flow of 550 m3/sec)	Dam Infrastructure during the Construction Period
Dead storage availability (less than 11 mt/year sediment load in Boregna's reservoir)	(Coffer Dam, Diversion Channel, Spillway, etc.)
<u> </u>	« <mark>//</mark> == == //

Severity methods for climate risk assessment

		Severity
Scale	Method D	Method E
0	No effect	Negligible or Not Applicable
1	Measurable 0.0125	Very Low / Unlikely / Rare / Measurable Change
2	Minor 0.025	Low / Seldom / Marginal / Change in Serviceability
3	Moderate 0.050	Occasional Loss of Some Capability
4	Major 0.100	Moderate Loss of Some Capacity
5	Serious 0.200	Likely Regular / Loss of Capacity and Loss of Some
		Function
6	Hazardous 0.400	Major / Likely / Critical / Loss of Function
7	Catastrophic 0.800	Extreme / Frequent / Continuous / Loss of Asset

24/03/2021

Infrastructure Component	Climate or Hydrological Parameter	Probability (up to 2080)	Severity	Risk
Infrastructure				
Dam				
Weir	PMF	1	5	5
Gated Spillway	PMF	1	6	6
Dam Crest	PMF	1	7	7
Padial Catag	PMF	1	6	6
Radial Gates	10,000 year flood	2	6	12
	PMF	1	6	6
Stilling Basin	10,000 year flood	2	6	12
	Dead Storage Availability - Sediment	3	6	18
	PMF	1	5	5
Reservoir	10,000 year flood	2	5	10
	Dead Storage Availability - Sediment	3	5	15
	PMF	1	6	6
Power Supply Facilities	Dead Storage Availability - Sediment	3	3	9
	High Temperature	2	4	8
Water Treatment Plant				
	PMF	1	6	6
Water Treatment Plant	10,000 year flood	2	6	12
	Dead Storage Availability - Sediment	3	3	9

Infrastructure Component	Climate or Hydrological Parameter	Probability	Severity	Risk
Infrastructure				
Powerhouse			-	
Generators	High Temperature	2	4	8
	PMF	1	3	3
Tailrace Channel	10,000 year flood	2	3	6
	PMF	1	6	6
Tailrace Rip-Rap Erosion Protection	10,000 year flood	2	6	12
External Power Infrastructure				
	PMF	1	4	4
Switch Yard	High Temperature	2	3	6
	PMF	1	4	4
High Tension Cables	High Temperature	2	4	8
	PMF	1	4	4
Transmission Towers	High Temperature	2	3	6
Access Road				
	PMF	1	5	5
	10,000 year flood	2	5	10
Access Road	High Temperature	2	2	4
Supplies Delivery	High Temperature	2	3	6

Infrastructure Component	Climate or Hydrological Parameter	Probab -ility	Severit y	Risk
Operations				
Derconnol	PMF	1	6	6
	10,000 year flood	2	6	12
Telephone, Telemetry	PMF	1	6	6
Control/Monitoring Systems	PMF	1	2	2
Control Building	PMF	1	3	3
Functions Services				
Flood Mitigation	PMF	1	6	6
	10,000 year flood	2	6	5
Transportation Service	PMF	1	5	5
	10,000 year flood	2	5	10
Construction Period				
Diversion Channel	5-year flood	6	4	24
Access Roads	5-year flood	6	4	24
Cofferdam	5-year flood	6	7	42
Spillway	5-year flood	6	6	36
Embankments	5-year flood	6	5	30
Irrigation Structures (intake)	5-year flood	6	4	24
Transportation				
	PMF	1	6	6
Supplies Delivery	High Temperature	2	3	6

Summary of risk findings

- A total of 104 climate hydrology/infrastructure interactions were identified
- Seventy-two (72) interactions as low risk for future conditions
- > Thirty (30) interactions as medium risk for future conditions
- > Two (2) interaction was identified as high risk for future conditions
- > Forty-seven (47) interactions were relevant for further consideration.

Conclustion of risk findings

- Borenga Multipurpose dam has the capacity to withstand the projected future climate (i.e. to the 2080s).
- Iargest potential impact could be during the construction period and on the spillway structure.
- Due to expected increase in 25 years flood, the increase in flood magnitude can affect the upstream coffer dam and other diversion structures and hamper the construction of the main Dam.
- 25 years flood can affect the Dam during the operation of the dam. This mainly on spillway structures such as gates and stilling basins.

Recommendations

Components of the physical structure	Recommendations
Dam Crest	 ✓ Incorporate fuse plug
	 Consider emergency spillway during design
	 Consider watershed management interventions. This relates to allowing physical space for the river flood along the river course
	✓ Prepare emergency action plan
	 Use climate projections to determine the future PMF to adjust/amend the dam crest design (height)
Dam Instruments	\checkmark Use instruments that can withstand the max and min temperature.
Spillway	 ✓ Incorporate fuse plug ✓ Increase resilience of the spillway by increasing the freeboard and making it flexible to adjust to climate change ✓ Plan for emergency spillway ✓ Carry out more investigation during the design planning considering climate change ✓ Check design parameter of the spillway against high floods
Powerhouse	 ✓ Keep the design as it is ✓ Consider backwater protection (e.g. valve) ✓ Consider enough space for tail water depending on topography

Type of components	Recommendation
Operations	Establish emergency plan to be used in the event of flooding
	 Create awareness about hazard of flooding and safety measures to be implemented during flooding
	As Tams is a big structure, establish wireless communication system which will be used during severe flooding
	Consider satellite for hydrological data transmission
Functional Services	 Establish an early warning system for flood protection
	 Establish upstream monitoring system
	Evacuation plan should be prepared
	Review emergency plan if it is prepared during the reconnaissance study
	 Consider alternative power sources to be utilized during high flood and disruption of power production from the dam
	Try to have robust irrigation infrastructure design considering climate change to avoid damage in the event of high flow
	Consider the design parameter for navigation as a social condition

Type of components	Recommendation
Construction Period	Design coffer dams for longer return period considering climate change
	Check it with projected climate
	• Consider other diversion methods during design of structure for the construction period
Other systems	Consider alternative power supply for safety purposes
	Consider nearby fire extinguishing service
	Consider modern satellite power transmission
	Consider underground cabling for power transmission
	Improve structural capability of transmission lines and substations
	 Consider air transport in places where there is poor road network although it requires high cost
	 Widen roads to accommodate appropriated vehicle for the delivery of hydro- mechanical parts for the dam
	• The delivery of dam supply should be properly planned. For example, avoid rainy season for transportation of heavy hydro-mechanical parts

THANK YOU!

H. 11 18484

