
NILE BASIN INITIATIVE

NILE EQUATORIAL LAKES SUBSIDIARY ACTION PROGRAMME (NELSAP)

STUDY ON THE INTERCONNECTION OF THE ELECTRICITY NETWORKS OF THE NILE EQUATORIAL LAKES COUNTRIES

FEASIBILITY REPORT VOLUME 3 C – UGANDA-RWANDA INTERCONNECTION LINE ROUTE AND GEOTECHNICAL INVESTIGATIONS

FINAL

NOVEMBER 2007 N°1 36 0300

GENERAL TABLE OF CONTENTS

The feasibility report includes the following volumes:

- Volume 1: Power supply and demand analysis
- Volume 2: Uganda Kenya interconnection
- Volume 3: Uganda Rwanda interconnection
- Volume 4: Burundi Rwanda interconnections
- Volume 5: Burundi DRC Rwanda interconnections and upgrade
- Volume 6: Power System Design

TABLE OF CONTENTS

LIST OF A	ABBREVIATIONS	I
1. LINE R	OUTE IN UGANDA	1
1.1.	LINE ROUTE SURVEY	
	1.1.1. General	1
	1.1.2. SCOPE OF WORK FOR LINE ROUTE SURVEY AND SOIL INVESTIGATIONS	
	1.1.3. SURVEY AND SOIL INVESTIGATION	3
1.2.	LINE ROUTE MAPS	3
2. LINE R	OUTE IN RWANDA	4
2.1.	LINE ROUTE SURVEY	4
2.2.	LINE ROUTE DESCRIPTION AND MAPS	4

LIST OF ANNEXES

ANNEX A. SURVEY REPORT	9
ANNEX B. GEOTECHNICAL INVESTIGATION REPORT	10
ANNEX C. GENERAL MAP: MBARARA – MIRAMA	11
ANNEX D. MAP SHEETS: MBARARA – MIRAMA	12
ANNEX E. LONGITUDINAL PROFILES: MBARARA – MIRAMA	13
ANNEX F. GENERAL MAP: BIREMBO – MIRAMA	14
ANNEX G. MAP SHEETS: BIREMBO – MIRAMA	15
ANNEX H. LONGITUDINAL PROFILES: BIREMBO – MIRAMA	16

oOo

LIST OF ABBREVIATIONS

AFSEC	African Electrotechnical Standardization Commission / Commission Electrotechnique Africaine de Normalisation
BAD	Banque Africaine de Développement
PEAC	Central Africa Power Pool / Pool énergétique de l'Afrique Centrale
CEEAC	Communauté Economique des Etats de l'Afrique Centrale (ECCAS)
CEPGL	Communauté Economique des Pays des Grands Lacs
DEM	Digital Elevation Model
DRC / RDC	Democratic Republic of Congo / République Démocratique du Congo
EAPP	East African Power Pool / Pool énergétique de l'Afrique de l'Est
EGL	Energie des pays des Grands Lacs (Burundi, RDC, Rwanda)
EDF / FED	European Development Fund / Fond Européen de Développement
ERA	Electricity Regulatory Authority (Uganda)
KenGen	Kenya Electricity Generating Company Ltd
KPLC	The Kenya Power and Lighting Co. Ltd
MEM	Ministère de l'Energie et des Mines / Ministry of Energy and Mining
Mol	Ministry of Infrastructures / Ministère des Infrastructures
MNT	Modèle numérique de terrain
NBI / IBN	Nile Basin Initiative / Initiative du Bassin du Nil
NEL	Nile Equatorial Lakes
NEL-CU	Coordination unit for NELSAP
NELSAP	Nile Equatorial Lakes Subsidiary Action Programme
PAALEN	Programme Auxiliaire d'Action des pays des Lacs Equatoriaux du Nil
PPA	Power Purchase Agreement / Contrat d'achat d'énergie
PREBU	Programme de réhabilitation du Burundi
SADC	Southern Africa Development Community / Communauté pour le développement de l'Afrique Australe
SAPP	Southern Africa Power Pool / Pool énergétique de l'Afrique Australe
SINELAC	Société internationale d'électricité des pays des grands lacs
SNEL	Société National d'Electricité (RDC)
SRTM	Shuttle Radar Topography Mission
UEGCL	Uganda Electricity Generation Company Ltd
UETCL	Uganda Electricity Transmission Company Ltd
UPDEA	Union des Producteurs, Transporteurs et Distributeurs d'Energie Electrique d'Afrique / Union of Producers, Transporters and Distributors of Electric Power in Africa
USAID	Agence pour le Développement International des Etats Unis
WAPP	West Africa Power Pool

1. Line Route in Uganda

1.1. LINE ROUTE SURVEY

1.1.1. General

A line route survey was conducted by sub-consultants at the Uganda – Rwanda interconnection section.

The interconnection transmission line route of Uganda – Rwanda has been planned by UETCL starting from existing Mbarara North 132/33 kV substation to Rwandan Border via Mirama, where a new 132 kV substation will be constructed.

1.1.2. SCOPE OF WORK FOR LINE ROUTE SURVEY AND SOIL INVESTIGATIONS

1. Introduction

The survey and soil investigation works will be carried out on the line route Mbarara North substation - Mirama.

The proposed line route is shown on map sheets in scale of 1:50 000. The length of the proposed line is approximately 57 km in Uganda.

2. Survey

The purpose for this survey work in the feasibility study phase is to get mapped all the features along the proposed line route. Furthermore, the results of the survey will provide coordinates (UTM coordinate system) of all the features. The survey shall be carried out by means of GPS equipment.

The features to be surveyed and mapped shall include, but not being limited to:

- All kind of buildings (permanent and temporary);
- Overhead lines and cables (electric and telecommunication) crossings;
- Underground cables crossings;
- Pipelines crossings;
- Roads (paved or unpaved, including tracks and paths) crossings;
- Railways crossings;
- Walls;
- Fences;
- Tanks;
- Other firm obstacles, which differ from the general shape of the ground;
- Rivers, brooks, etc. crossings;
- Soil types (see also chapter 3);
- Protected areas;

- Vegetation (which type);
- Pasturelands;
- Cultivated (agricultural) areas: type of crops; and
- Angle points of the existing 132 kV OHTL.

The line route shall be mapped to the distance of 15 m on both sides of the centre line.

The levels (altitudes) of following objects are to be measured:

- Roads and railways;
- crossing of overhead lines and towers;
- water levels (actual water level with date and time and HW-level);
- buildings, tanks;
- fences and walls, etc.

The survey shall be based on topographical maps of scale 1:50 000 and the required map sheets for this line route are as follows:

<u> Mbarara - Mirama</u>

- 86/1
- 86/3
- 85/4

All the existing access roads on the line route area shall be marked on the route map. The existing roads from main road to the line route if any shall be listed with description of condition.

3. Marking

Every angle points shall be pegged out at site by using concrete pegs with numbering AP1, AP2 ... etc. starting from Mbarara North substation.

4. Soil Investigation

The bearing capacity of soil and soil type shall be estimated visually at adequate intervals and soft soil areas on the right-of-way shall be mapped in order to avoid tower setting at these areas.

The areas, where there is risk of landslides above or below the tower shall be mapped as well as the areas of exposed to erosion.

Above and beyond at certain intervals and wherever the soil type changes substantially an actual soil test shall be carried out. The purpose of the soil test is to determine and verify the soil parameters for foundation design.

The sub soil conditions shall be determined by standard penetration test (SPT-probing) and laboratory analysis. Standard penetration test shall be carried out at around 10 km, or when the soil type changes dramatically, intervals according to BS or other equivalent standard. The number of blows (N-values) for every 150 mm penetration shall be recorded. The total quantity of SPT-probing shall be 20, maximum.

The geology and hazardous lands maps shall be provided.

5. Recording and Reporting

The results of the survey work shall be recorded on maps to the extent as reasonable and in separate report in all details determined, including list of coordinates.

The maps of an appropriate scale shall be in AutoCAD format.

1.1.3. SURVEY AND SOIL INVESTIGATION

At Feasibility Study phase it was conducted a field survey by a sub-consultant: Power Networks (U) Ltd. carried out the line route survey and soil investigations along the surveyed line route, both based on the Scope of Work presented in Chapter 1.2. Teclab Ltd. provided laboratory tests and analysis. The reports are in Annex 1 – Survey Report, and Annex 2 – Geotechnical Investigation Report.

1.2. LINE ROUTE MAPS

LIST OF SURVEYED MAPS: MBARARA – MIRAMA 220 (132) KV LINE

<u>Section of Line Route</u> Mbarara substation – AP (=angle point) 2	Pages 1
AP 2 – Kabale–Mbarara road crossing – km 4.76	2
Km 4.76 – AP 3 – Namiyaga Village – km 8.63	3
Km 8.63 - AP 4 – km 12.04	4
Km 12.04 – km 14.68	5
Km 14.68 – AP 5 (Kashekure Village) – AP 6 – km 18.95	6
Km 18.95 – AP 7 – AP 8 – km 22.14	7
Km 22.14 – AP 9 – km 24.91	8
Km 24.91 - AP 10 – Byanamira Village – km 27.82	9
Km 27.82 – km 30.72	10
Km 30.72 – AP 11 – Nyarubare Village - km 34.83	11
Km 34.83 – AP 12 – km 37.64	12
Km 37.64 - AP 13 (Kantaama Village) – Kitonjo Village - km 40.53	13
Km 40.53 – AP 14 (Nyabugando Village) – km 43.37	14
Km 43.37 – Kakindu Village - AP 15 – km 45.98	15
Km 45.98 – Rukoni Village - Kagorotogo Village - km 48.81	16
Km 48.81 – Kabombo Village – km 51.65	17
Km 51.65 – AP 16 (Kitwe Village) – km 55.30	18
Km 55.30 – Mirama substation	19

The general map of Mbarara – Mirama line is in Annex C.

The map sheets are in Annex D.

Longitudinal profiles are in Annex E.

2. LINE ROUTE IN RWANDA

2.1. LINE ROUTE SURVEY

A preliminary field survey was conducted during site visits at both interconnection sections, from Mbarara substation to the Uganda-Rwanda border and from this latter through Nyagatare towards Kigali.

Technical information was gathered at ELECTROGAZ, Department of Energy and NELSAP offices in Kigali.

2.2. LINE ROUTE DESCRIPTION AND MAPS

To connect the new Birembo substation located on the transmission line between Jabana and Rwinkwavu to Mirama substation which is connected to the Mbarara substation in Uganda, corridor A was selected, it is the shortest and has a good access.

The description of line A is based on geographical maps at scale of 1 : 50 000, Landsat 7 ETM satellite images (15 m resolution) as well as the SRTM digital elevation model to create a three-dimensional view of the interest zone.

Line A Sections are defined here under :

1. SECTION NEW BIREMBO SUBSTATION – A 0

Distance : 2,1 km

The new proposed 220 kV line heads towards the North avoiding habitations and arrives to angle point A. East of the village of Nyakabingo. The region crossed is mainly composed of afforestation and hill crops.

2. SECTION A0 – A1

Distance: 1,6 km

From the angle point A0, the line deviates towards the North-East in direction of the original line A and join it at the new angle point A1, north of Bumbogo village.

3. SECTION A1 – A2

Distance: 2,1 km

From the A1 angle point, the line turns northwards. The line goes parallel to the Rurambarara river where we see a valley bottom crops zone. The line follows the embankment of the hills near the river until the A2 angle point. The terrain profile is descending.

4. SECTION A2 – A3

Distance: 4,9 km

The A2 angle is situated at the west of Gikomero village. The line lines up between the Mulundi river to the East and the road to the West and continues until the A3 angle. The line is easily accessible. We encounter banana trees all along the section.

5. SECTION A3 – A4

Distance: 2,2 km

Soon after the A3 angle, the line traverses the Kajevuba river and passes through a region where the vegetation consists of banana trees and hill crops. Access is good.

6. SECTION A4 – A5

Distance: 2,1 km

The line changes slightly its direction at the A4 angle point and continues towards the North going across respectively tree plantation zone and a national road. The A5 angle is located just to the north of this road.

7. SECTION A5 – A6

Distance: 8,9 km

After the A5 angle point, the line bifurcates towards the North-West and passes between Baliza and Rurembo villages. The line goes along the national road which in turn follows the Mwange river until the A6 angle which will be situated near Akimisugi village. The line is easily accessible.

The vegetation that we find consists of hill crops (bananas, etc.) and some tree plantations near the village of Muhoroho. The terrain is mountainous (maximum altitude difference of 250 m over a distance of 700 m).

8. SECTION A6 – A7

Distance: 6,9 km

From the A6 angle, the line turns eastwards and traverses the Kigali-Gatuna main asphalted road and the Mwange river. Along the way, it crosses Ruhango and Muhama villages, passes through a plain and cuts twice a community road. Near this road will be located the A7 angle at the west of Kinyami village.

In the first part of the line, the terrain rises steeply (about 400 m over a distance of 2,5 km). Banana plantations are scattered in the region as well as wooded zones near the national roads and in the neighbourhoods of Muhama.

9. SECTION A7 – A8

Distance: 4,6 km

The line deviates more eastwards at the A7 angle point and continues its way descending towards a community road. From this road and on, the terrain becomes relatively flat. At the end, it crosses several streams including the Nyakagezi. We find the same type of vegetation as in the previous section. Access is good.

10. SECTION A8 – A9

Distance: 4 km

From the A8 angle point which will be situated north of Ruvune, the line turns slightly eastwards and goes up gradually until Kirambo, it crosses a community road and another one 750 m away. From this last point, it descends towards a valley where passes the Kamoko river and goes up until the A9 angle situated on a hill. We find the same type of vegetation as in the previous section. Access is good.

11. SECTION A9 – A10

Distance: 3,5 km

From the ridge mentioned above, the line turns slightly northwards and descends around 400 m over a distance of 3,4 km. It traverses a series of streams through a tree plantation area. The proposed A10 angle would be placed close to a road, at the north of Kagera, in a terrain used for banana plantations.

12. SECTION A10 - A11

Distance: 3,5 km

The line traverses a valley parallel to an existing road. Towards the end of the section, it follows a hill and ends at the west of Ngarama. We find the same type of vegetation than in the previous section.

13. SECTION A11 – A12

Distance: 2,1 km

The line goes on with a slight change of direction, it traverses a moist savannah zone and valley bottom crops over a distance of around 500 m parallel to Kabare stream and ends over a hill where angle A12 will be placed. Tree plantations are found on the hill.

14. SECTION A12 – A13

Distance: 3,9 km

From the A12 angle point, the line deviates more northwards and crosses the national road as well as Nyabitare stream at two distinct points. Banana plantations are encountered along the path.

15. SECTION A13 – A14

Distance: 3,6 km

The line turns even more northwards to approach an existing road. In the region, housing density is low and access is good. The A14 angle would be located close to Gikandura stream. Hill crops characterize the vegetation encountered.

16. SECTION A14 – A15

Distance: 7,8 km

From the A14 angle point, the line is aligned parallel to the national road and traverses a savannah zone at the west of a former hunting domain which is now occupied by the population. The A15 angle point would be placed on the embankment of a hill in the Kikoga region. Housing density is very low in the region covered by the line.

17. SECTION A15 – A16

Distance: 3,6 km

The line changes slightly its direction to stay close to the national road. The center line of the line is located around 1.2 km east of the road. The vegetation is the same as in the previous section. The A16 angle is situated on the embankment of a hill (altitude of about 1400 m) in the village of Bushoga.

18. SECTION A16 – A17

Distance: 4,4 km

From the A16 angle point, the line heads towards the national road and avoids two zones of low density population. The vegetation remains the same. At the A17 angle point, the distance that separates the center line of the line and the road is about 350 m.

19. SECTION A17 – A18

Distance: 4 km

From the A17 angle point, the line retakes a parallel trajectory to the national road (north-east direction) and traverses the region of Akajuka to arrive near a community road which is perpendicular to the national road. Housing density stays very low all along the line with the same type of vegetation as in the previous sections, which is a savannah.

20. SECTION A18 - A19

Distance: 3,1 km

From the A18 angle, the line turns more eastwards to avoid the chief place of the Nyagatare District and approaches around 600 m from the western limit of the former hunting domain. Many roads and paths are found along the way.

21. SECTION A19 – A20

Distance: 9,5 km

From the A19 angle, the line changes its direction and moves northwards, parallel to the national road at the west of the center line of the line and the former hunting domain to the east. It intersects several paths along its course.

The A20 angle will be placed north of the national road that deviates eastwards at the end of the section and stands in front of the line. The covered region is a savannah, except at the end of the line near Gituro village where it's a moist savannah.

22. SECTION A20 – A21

Distance: 3,8 km

From the A20 angle point, the line turns towards the North-West and heads to the east of Kanyinya village. Along the line, the population is very low. Many paths cross the section, thus access is good. We remain in a savannah zone. The A21 angle is located ath the east of Kanyinya.

23. SECTION A21 – A22

Distance: 3,2 km

The line continues in straight line northwards and follows a hill. Several roads and paths cut the proposed line. The vegetation is the same as in the previous sections.

24. SECTION A22 – A23

Distance: 7,7 km

After the A22 angle point, the line rotates slightly eastwards and continues to head towards the North in diection of the Rwanda–Uganda border. The line is easily accessible due to the roads network in the region. Housing density is low. Angle A23 is located about 1.5 km from the border with Uganda.

25. SECTION A23 – A24

Distance: 3,1 km

At the A23 angle, the line deviates eastwards, passes north of a veterinary clinic and traverses a moist savannah zone until the end of the section. The terrain is relatively flat and access is good. The A24 angle will be situated west of Kagitumba.

26. SECTION A24 – MIRAMA HILLS SUBSTATION (UGANDA)

Distance: 9,6 km

Soon after the A24 angle point, the line cuts the Kagitumba river, traverses the border and heads towards a North-East direction, directly towards the Mirama Hills substation. Thus, it passes South-East of Kafunzo region, cuts the Kafunzo river as well as the road that leads to Mirama. This road is located at the bottom of a hill. Thus, the line traverses an altitude difference of approximately 175 m over a distance of 800 m to end up at Mirama substation. The vegetation in the region consists mainly of different grass species and bushes.

NILE BASIN INITIATIVE - NILE EQUATORIAL LAKES SUBSIDIARY ACTION PROGRAM STUDY OF THE INTERCONNEXION OF THE ELECTRICITY NETWORKS OF THE NILE EQUATORIAL LAKES COUNTRIES FEASIBILITY REPORT - VOLUME 3C – UGANDA - RWANDA INTERCONNECTION LINE ROUTE AND GEOTECHNICAL INVESTIGATIONS

	Tableau n° 1 - Line	A
Section	Distance (km)	Principle angles (°)
New Birembo Substtion – A0	2,1	33°
A0 - A1	1,6	36°
A1 – A2	2,1	10 [°]
A2 – A3	4,9	22°
A3 – A4	2,2	5°
A4 – A5	2,1	28°
A5 – A6	9	27°
A6 – A7	6,9	33°
A7 – A8	4,6	7°
A8 – A9	4	4 [°]
A9 – A10	3,5	7°
A10 – A11	3,5	12°
A11 – A12	2,1	19°
A12 – A13	3,9	22°
A13 – A14	3,6	14 [°]
A14 – A15	7,8	6°
A15 – A16	3,6	26°
A16 – A17	4,4	47°
A17 – A18	4	20°
A18 – A19	3,1	48°
A19 – A20	9,5	22°
A20 – A21	3,8	12°
A21 – A22	3,2	6°
A22 – A23	7,7	49°
A23 – A24	3,1	19°
A24 – Mirama Hills Substation (Uganda)	9,6	
Total :	115,9 km	

Tableau n	°1-	LINE /	4
-----------	-----	--------	---

The general map of Birembo – Mirama line is in Annex F.

The map sheets are in Annex G.

Longitudinal profiles are in Annex H

ANNEX A. SURVEY REPORT

STUDY ON THE INTERCONNECTION OF ELECTRICITY NETWORKS OF THE NILE EQUATORIAL LAKES COUNTRIES (NELSAP) – UGANDA – RWANDA INTERCONNECTION

Survey Report

1.1 Introduction

This interconection is one of the 3 interconnections under the project – NELSAP.

The sectoral objective of the study is to improve the rate of access to electrical power for the people of the Equatorial Nile basin. NELSAP under the Nile Basin Initiative is carrying out a study on the interconnection of the electricity Networks of the Nile Equatorial Lakes Countries. This report is part of the whole study and is restricted to the topographical survey for the feasibility study on interconnection Transmission line Uganda –Rwanda. The coverage will be from Mbarara Transmission substation upto Mirama in Uganda.

1.2 The Scope of Services

The services will generally consist of identification of line route by fixing angle points, and a topographical survey of the line route and descriptions of the line route as identified. The topographical survey will be done in the region 50 metres on either side of the centreline.

The general objectives of the study include:

- The definition of a specific line routing based on fixed angle points and a corridor width of 100 meters as specified in the Terms of Reference. The definition of the line routing shall take into consideration the issues outlined and recommendations made in the Environmental Impact Statement report.
- The optimisation of the routing taking into account the aim of avoiding dwellings and to mitigate environmental impact.

The specific objectives for the survey work in the feasibility study phase is:

- a) to get mapped all the features along the proposed line routes
- b) to provide UTM coordinates of all the features as measured by means of Global Positioning System(GPS)

The features captured included:

- □ All types of buildings (permanent and temporary)
- Overhead lines and cables(electric and telecommunication) crossings
- Underground cable crossngs
- Pipelines
- Roads(paved or unpaved, including tracks and paths)

- Walls, fences, tanks
- □ River brooks
- Protected areas
- Vegetation type
- Pasturelands
- Cultivated areas and type of crops

The levels of the following objects/features were measured:

- Roads
- Crossing of overhead lines
- Water levels at the time of measurement
- Buildings
- □ Fences and walls.
 - c) to identify and determine the optimum alignment of the routing within the prefeasibility report specified transmission corridor.
 - d) To provide a line route description of the elaborated line routing
 - e) To provide other information necessary for enabling the employer to satisfy that all environmental concerns and consequences are are fully intergrated into the project.
 - f) Presentation of the results of the Survey work in form of maps to the extent as reasonable and in a separate report all details determined including list of coordinates.

1.3 Marking

Every angle point was marked by Concrete pegs with numbering AP ---(see photographs).

The Survey was done in an area where there was no existing Transmission line and therefore line routing survey methodology differed from the Bujagali-Tororo-Malaba line, however detail survey was similar where the line was already defined.

This report gives a line route survey methodology and the position of the fixed angle points. The points of detail within the range required in the TORs is also indicated on the survey drawings.

2.0 Line Route Survey:

2.1 Survey Methodology

Fixing angle points:

The principle was to use coordinates supplied by the consultant to fix the angle points.

The Coordinates of an angle point would be entered in a global positioning system(GPS). Using the GPS in navigation mode, the angle point would be identified. A combination of the GPS and the topographical map features would help indentify the intermediate and angle points.

Intermediate points were identified by computing points on line at particular distances. Again using the GPS in navigation mode, the intermediate points would be fixed and points of detail surveyed.

The angle points were surveyed using DATAGRID differential GPS.

A known reference point was occupied by a receiver. This is called the base. Other receivers would be placed on the angle points to be fixed and known as rovers. A total of 3 rovers were used in the survey.

The data collected was downloaded onto a computer with specific software for downloading and derivation of resultant computed coordinates.

Detail Survey:

As for the Kenya – Uganda interconnection.

132kV Mbarara- Mirama Route Description

Please note:

- a) AP1-AP2 Road crossing, the proposed line passes in many residential houses at Nyakanyonyi village. The area may need revisiting after assessing compensation requirements.
- b) AP2 –AP3, at Nyakayojo village, the line is passing through dormitories and classrooms.
- c) AP3-AP4 Line crosses aschool
- d) AP4-AP5 line partly crosses a wetland
- e) AP5-AP6 hilly but cultivated
- f) AP6-AP7 hilly terrain
- g) AP7-AP8 hilly terrain but AP7 lies in a wetland
- h) AP8-AP9 hilly terrain
- i) AP9-AP10 runs along a stream
- j) AP10-AP11 crosses a stream
- k) AP11-AP12- AP13 crosses a wetland
- I) AP13-AP14 (sheet 6-7, at katonjo village, there is a church nearby.
- m) AP15-AP16, the line crosses a community playground.

There may be a few changes during the design stage. And after considerations of the EIA and RAP reports.

132kV Mbarara-Mirama

Angle Points coordinate list

System: UTM Zone 36(30 E to 36E)

				Cumulative	Altitude	Remarks
Angle	Northing	Easting	Section Length	distance		
				(Chain age)		
AP1	234127	9933948			1430	
AP2	233849	9931904	2062.8	2063	1402	
AP2a	233496	9929904	2030.9	4094	1405	
AP3	233781	9928228	1700	5794	1404	
AP4	230120	9925480	4577.6	10371	1444	
AP5	229137	9920880	4704	15075	1439	
AP6	226010	9921468	3182	18257	1538	
AP7	224514	9920700	1682	19939	1640	
AP8	224151	9919776	993	20931	1692	
AP9	225346	9917666	2425	23356	1679	
AP10	225321	9916266	1400	24757	1506	
AP11	222222	9910330	6696	31453	1445	
AP12	225182	9908382	3543	34996	1390	
AP13	224553	9905348	3099	38095	1375	
AP14	222450	9901702	4209	42304	1368	
AP15	222525	9898640	3063	45367	1364	
AP16	219648	9892268	6991	52358	1374	
						Dead end
AP17	216228	9889432	4443	56801	1370	tower
			56801			

Mbarara-Mirama 132Kv LINE SURVEY --- AP/SUBSTATION AT MBARARA

MBARARA-MIRAMA 132KV LINE SURVEY—CROSSING RIVER RWIZI TOWARDS AP1

MBARARA-MIRAMA 132KV LINE SURVEY –A DORMITORY AT NYAKAYOJO SECONDARY SCHOOL- THE PROPOSED LINE MAY AFFECT THE BUILDING.

MBARARA-MIRAMA 132KV LINE SURVEY –AP4 TAKEN FROM DIFFERENT DIRECTIONS.

MBARARA-MIRAMA 132KV LINE SURVEY – AP5.

MBARARA – MIRAMA 132KV LINE SURVEY --- AP6

MBARARA –MIRAMA 132KV LINE SURVEY AP7 A FARM OF MAIZE IS IN THE BACKGROUND

MBARARA-MIRAMA 132KV LINE SURVEY - AP8

MBARARA-MIRAMA 132KV LINE SURVEY—AP9 ON THE SLOPE OF A HILL-TYPICAL TERRAIN.

MBARARA –MIRAMA 132KV LINE SURVEY –AP12 TYPICAL CROPS ALONG THE ROUTE INCLUDE BANANAS

ANNEX B. GEOTECHNICAL INVESTIGATION REPORT

Geotechnical Investigations Report

March 2007

Feasibility Study on Interconnection Transmission Lines Uganda – Kenya and Uganda – Rwanda

POWER NETWORKS Uganda Limited

Feasibility Study on Interconnection Transmission Lines Uganda - Kenya and Uganda - Rwanda

Table of Contents

1	INT	RODUCTION1			
	1.1	General	1		
	1.2	Site investigations	1		
2	Buj	agali – Tororo Route	2		
	2.1	Location and Access	2		
	2.2	Regional Geology	3		
	2.3	Site Geology	3		
	2.4	Construction materials	3		
3	MB	ARARA - MIRAMA ROUTE	4		
	3.1	Location and Access	4		
	3.2	Regional Geology	4		
	3.3	Site Geology	4		
	3.4	Construction materials	5		
4	BIB	LIOGRAPHY	6		

ANNEXES:

- Annex 1 Test pit logs and photos
- Annex 2 General terrain photos
- Annex 3 Field activity photos
- Annex 4 Drawings
- Annex 5 Laboratory Report

1 INTRODUCTION

1.1 General

This report gives a description of geotechnical conditions on the feasibility study routes for the interconnection transmission lines from; Bujagali to Tororo (Uganda - Kenya) and Mbarara to Mirama (Uganda – Rwanda).

A sites investigation programme was carried out from February 2007 to March 2007 to determine geotechnical conditions at the sites and to provide data for foundation design and construction related to civil works. More specifically, the scope of work included the following tasks: -

- Evaluating the soil bearing capacity
- Geologic mapping
- Conducting soil tests
- Compiling a technical report

1.2 Site investigations

A number of test pits were excavated and mapped. Dynamic cone penetration (DCP) tests were carried out in most test pits as well as in-situ density measurements. In summary the following activities were carried out: -

- a) Excavation of 20 test pits using pick axes, hoes and spades. (13 on the proposed Bujagali - Tororo route and 7 on the proposed Mbarara – Mirama route). Locations of the test pits are shown on Drawings BT/GT/001 and MM/GT/001 in Annex 4.
- b) DCP testing in 16 test pits (9 on the proposed Bujagali Tororo route and 7 on the proposed Mbarara Mirama route)
- c) In-situ density tests in 15 test pits (10 on the proposed Bujagali Tororo route and 5 on the proposed Mbarara Mirama route)
- d) Reconnaissance for potential construction materials
- e) Geologic mapping. Geologic maps are presented on drawings BT/GT/002 and MM/GT/002 in Annex 4.

Geotechnical Investigations Report

Feasibility Study on Interconnection Transmission Lines Uganda - Kenya and Uganda - Rwanda

- f) Laboratory testing was carried out to further identify the soils and rocks, and obtain parameters for determining their strength characteristics. The tests were done on disturbed soil samples. Laboratory testing was carried out at Teclab Ltd in Kampala. Testing procedures followed the appropriate British Standard practices. Laboratory testing included: -
 - Moisture content
 - Particle size distribution
 - Atterberg limits

Dynamic Cone Penetration tests were carried out to derive the bearing capacities as opposed to Standard Penetration Tests (SPT) because available SPT equipment in Uganda can only be mounted on drill rigs, which would not have easily accessed most places.

General geologic maps and reports relating to the site areas were reviewed, notable among these; - The Uganda Geology 1966 by R. MacDonald.

All geotechnical data currently available, comprising laboratory test results, test pit reports, terrain photographs, and sites investigations activity photographs are presented in the Annexes.

2 Bujagali – Tororo Route

2.1 Location and Access

Bujagali is located in Eastern Uganda, near Jinja town, about 80 km from Kampala. Tororo is located about 131 km from Jinja by road. The proposed line is about 127 km in length and traverses a generally flat terrain. For most part, the proposed line runs parallel to the existing 132KV line from Jinja to Tororo sub station.

Access to most of the tower points for the proposed route is good considering that for much of the route there is already an existing access for the 132KV line. Some places, especially in swampy areas like Kibimba may not the easily accessible especially in the rainy seasons. Many of the swamps are shallow and are used for rice cultivation.

2.2 Regional Geology

The Bujagali –Tororo line traverses rock systems of the Buganda-Toro and Nyanza-Kavirondian, as well as Granitoid formations of Precambrian age. Pleistocene to recent age sediments, alluvium and black soils are also encountered in some places like at Kibimba. Karoo-Ecca shales of Paleozoic age containing Glossopteris flora occur in small apparently down faulted outliners near Bugiri, while carbonatite rocks occur in Tororo area.

2.3 Site Geology

Amphibolote rocks underly the area of Bujagali up to around Magamaga, although rock exposure is rare. Quartzite rocks outcrop at Magamaga and are belived to border the amphibolites to the east. Near Waitambogwe granite rock outcrops, and continue all the way to Busolo area near Kibimba. Some cherty quartzites outcrop near Bugiri. Kibimba area is underlain by alluvium black soils. There is a lack of rock exposure between Kibimba area and Tororo, and laterite duricrust is common. Tororo area is mainly underlain with Carbonatite rock.

In most of the area, the rocks have undergone deep tropical weathering, producing an overburden that grades from mature residual soil through completely decomposed and weathered rock to fresh bed rock with depth.

Test pits were excavated to map the subsurface conditions and the findings are presented in Annex 1, and in the laboratory report in Annex 5.

This area has no known geological hazards.

2.4 Construction materials

A brief reconnaissance was done on possible sources of coarse and fine aggregates that can be used in the construction works.

Coarse aggregates can be obtained by opening up quarries at the many granite rock occurrences, or utilizing Amphibolite rock from the Jinja Municipal quarry at Masese.

A number of beach sand deposits with sufficient quantities of good quality sand exist along the shores of Lake Victoria. Most of the deposits are privately owned and are intermittently exploited for local use. One such deposit is found in Lwanika, about 40 Km from Jinja town, in the present day Mayuge district.

3 MBARARA - MIRAMA ROUTE

3.1 Location and Access

Mbarara is located in Western Uganda, about 282 km from Kampala. The proposed line is about 60 km in length and traverses hilly rolling terrain.

Access to most of the tower points for the proposed route is fair to good as in most places the line route is not far from motorable access roads. However in some swampy areas access may be difficult as in Nyabugando village (AP14), Kitojo parish, Rukoni sub-county, Ntungamo district. See terrain photos Annex 2.

3.2 Regional Geology

Mbarara to Mirama is underlain mainly by the Karagwe ankolean system of Precambrian age and afew Granitoid formations. Pleistocene to recent age sediments, alluvium and black soils are also encountered.

The Karagwe Ankolean system (Kibaran belt) is one of the major geological features of central and eastern Africa. It stretches generally along a NNE-SSW alignment. This system represents a low grade metamorphosed sequence of sediments.

Folding is abundant in the rocks of the Karagwe Ankolean system. The folds are generally open, having wavelengths of 8 -16 km, becoming tight with synclinal keels between adjacent arena granites. Regional thrusts of large scale are not known within the Karagwe Ankolean system of Uganda. Axial plane cleavages, however, are common within these folds (King and de Swardt 1970) and might have played an important role as planes of weakness for the subsequent development of certain faults that are observed to strike parallel to and also replace or even displace the limbs of some folds (King and de Swardt 1970).

3.3 Site Geology

Most of the hills are covered by argillaceous formations, while some are capped by quartzite horizons. The valley areas are generally steep, and some valleys have small streams running at their bases.

Shales, Quartzites and Granites are the dominant rock types in the area. The area is folded and faulted giving rise to a hilly terrain.

Geotechnical Investigations Report

The shales are the dominant rocks in the area and show variation in color. There are the reddish brown ferrugnised shales and gray-purple shales. The shales contain many structural features like bedding, cleavage and jointing. Due to regional metamorphism, a change from shales to phyllites can be noticed.

The quartzites are light to brown colored, and jointed.

The granite rocks are light colored, medium to coarse grained, and with a massive texture.

Test pits were excavated to map the subsurface conditions and the findings are presented in Annex 1, and in the laboratory report in Annex 5.

This area has not experienced any known geological hazards in recent times. Despite being a hilly area, landslides are unheard of in the region.

3.4 Construction materials

Coarse aggregates can be obtained by opening up a quarry at the granite rock occurrences in Kitwe.

Small sand deposits exist in some valleys but their quantities are not known and the quality may not be very good. Alternatively fine aggregate may be obtained from the crushed rock.

4 **BIBLIOGRAPHY**

Department of Geological Survey and Mines, Uganda Geology Map, 1966

King, B.C & Swardt, A.M.J. de. (1970: Problems of Structure and Correlation in the Precambrian Systems of Central and Western Uganda. Geological Survey of Uganda

Pallister, J.W. 'The Geology of Southern Mengo,' Report 1, Geological Survey of Uganda, 1959

Annex 1 – Test pit logs and photos

Test Pit No.	Coordinates (UTM)	Locality (Area)	Test Pit Log	Pit photo
B-TP1	N 55206 E 514780	Kikubamutwe/ Bujagali	Reddish brown clay. 1.2 m	
		[Sub station]	Reddish brown fine gravel. 0.55 m	
B-TP2	N 52315 E 518974	Buwenda	2.5 m	
B-TP3	N 53856 E 523924	Wakitaka	1.8 m	
B-TP4	N 53915 E 533951	Gomoja (Kakira Sugar Plantation)	1.6 m	
B-TP5	N 58698 E545700	Waitambogwe	1.8 m	

Table 1: Test pit logs and Pit photos – Bujagali Tororo route

Test Pit No.	Coordinates (UTM)	Locality (Area)	Test Pit Log	Pit photo
B-TP6	N 59051 E 557300	Buwaiswa	1.3 m	
B-TP7	N 61700 E 567225	Nakivumbi	1.5 m	
B-TP8	N 62700 E 570650	Bukenke/ Bugodandala	1.6 m Gray clay 1.3 m	
В-ТР9	N 60676 E 577950	Magoola	2.0 m	
B-TP10	N 60676 E 592677	Busolo	1.0 m	

Table 1: Test pit logs and Pit photos – Bujagali Tororo route

Test Pit No.	Coordinates (UTM)	Locality (Area)	Test Pit Log	Pit photo
B-TP11	N 62716 E 602698	Namuwombi	2.0 m	
B-TP12	N 71697 E 618880	Pimori	1.8 m	
B-TP13	N 69635 E 626712	Agoloto B	2.2 m	

Table 1 (Continued): Test pit logs and Pit photos – Bujagali Tororo route

Test Pit No.	Coordinates (UTM)	Locality (Area)	Test Pit Log	Pit photo
M-TP1	N 9933947 E 234127	Mbarara Stock farm [AP1] Mbarara substation	1.9 m	
M-TP2	N 9925480 E 230120	Katukure/ Nyarubingo [AP4]	1.8 m	
M-TP3	N 9919776 E 224151	Mweya/ Kitoha [AP8]	1.2 m Shale	
M-TP4	N 9910329 E 222220	Kigando/ Ngugo [AP11]	1.2 m	
M-TP5	N 9901700 E 222450	Nyabugando/ Kitojo [AP14]	1.9 m	

Table 2: Test pit logs and Pit photos – Mbarara Mirama route

Test Pit No.	Location	Locality (Area)	Test Pit Log	Pit photo
М-ТР6	N 9892269 E 219646	Kitwe [AP16]	2.0 m	
M-TP7	N 9889431 E 216228	Rwembogo/ Nshenyi [AP17] Mirama Substation	1.8 m	

Table 2 (Continued): Test pit logs and Pit photos – Mbarara Mirama route

Annex 2 – General terrain photos

Feasibility Study on Interconnection Transmission Lines Uganda - Kenya and Uganda - Rwanda

Table 3: Terrain photos - Bujagali Tororo route

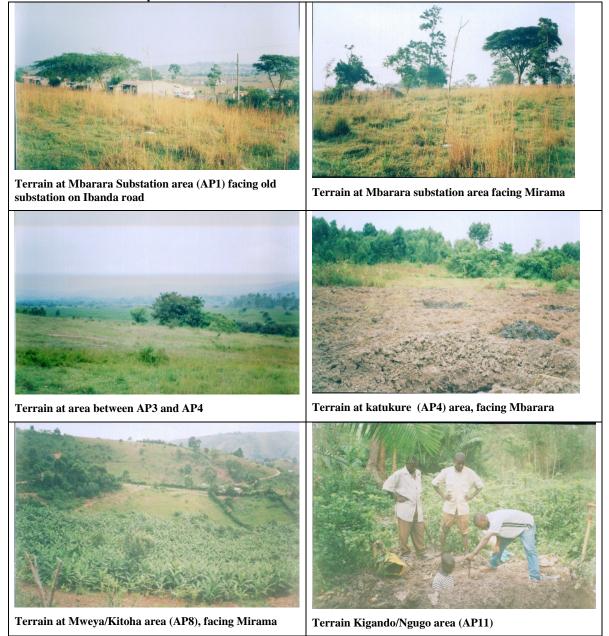


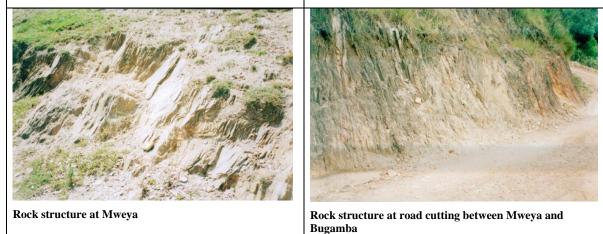
Table 3 (Continued): Terrain photos - Bujagali Tororo route

Feasibility Study on Interconnection Transmission Lines Uganda - Kenya and Uganda - Rwanda

Table 4: Terrain photos - Mbarara Mirama route

Table 4(Continued): Terrain photos - Mbarara Mirama route

Terrain Nyabugando/Kitojo area (AP14), facing Mirama


Access through swamp to Nyabugando/ Kitojo (AP14)

Terrain at Kitwe (AP16), facing Mbarara

Terrain at Rwembogo/ Mirama substation (AP17), facing Mbarara

Annex 3 – Field activity photos

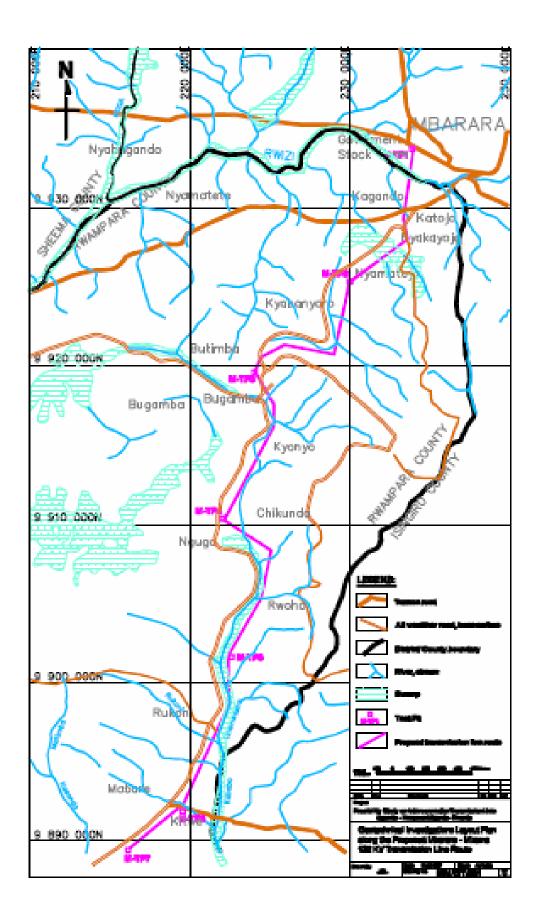
Feasibility Study on Interconnection Transmission Lines Uganda - Kenya and Uganda - Rwanda

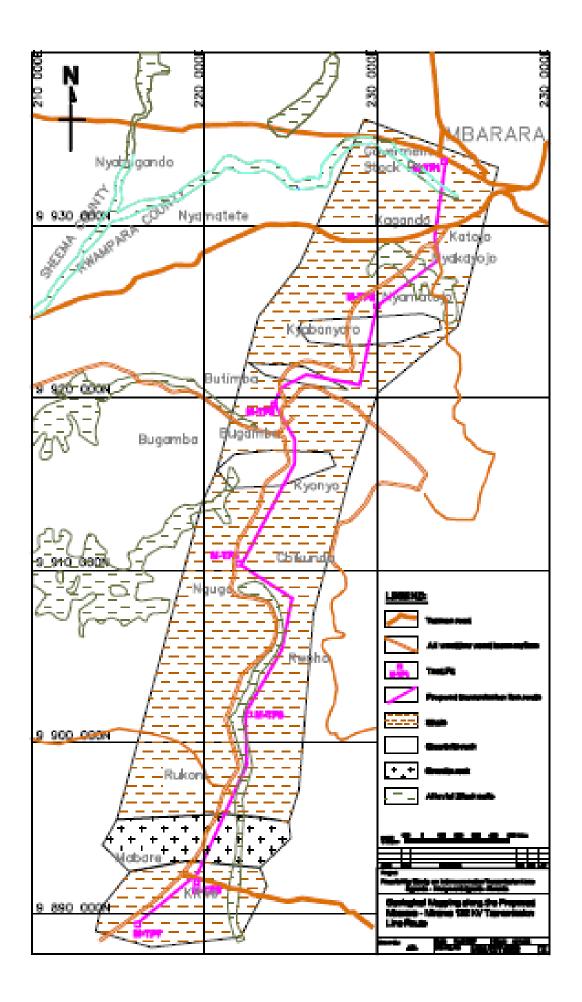
Table 5: Field activity photos

Dynamic Cone Penetration (DCP) test being carried out in one of the test pits

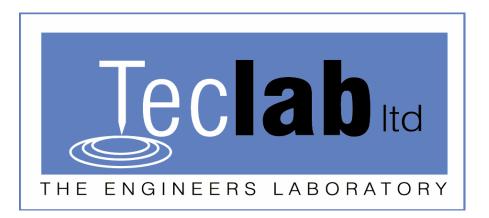
In-situ density test being conducted in one of the test pits

In-situ density test being conducted in one of the test pits




Weight measurements for in-situ density tests

General field work activities at Bukenke/ Bugodandala


Annex 4 – Drawings

Annex 5 – Laboratory report

Feasibility Study on Interconnection Transmission Lines Uganda - Kenya and Uganda - Rwanda

Project: Feasibility Study on Interconnection Transmission Lines Uganda-Kenya & Uganda-Rwanda

Client: M/s Power Networks (U) Ltd.

March 2007.

Geotechnical Investigations Report

TABLE OF CONTENTS

Table Of Contents Erreur ! Signet not	n défini.
List Of Tables	
1. Introduction	
2. The Site	6
3. Field Work	
3.1 General	7
3.2 Test Pit Excavation, Sampling, In-Situ Density Tests And Dynamic Cone	
Penetration Tests	7
3.2.1 Test Pit Excavation	7
3.2.2 Soil And Or Rock Sampling	
3.2.3 In-Situ Density Tests	8
3.2.4 Dynamic Cone Penetration (Dcp) Tests	8
4. Laboratory Testing	
5. Interpretation Of Field And Laboratory Test Results 5.1 Field Results 11	11
5.1.1 Visual Results	11
5.1.2 Ground Water	11
5.1.3 Dynamic Cone Penetration Tests (Dcp)	11
5.2 Laboratory Test Results	13
5.2.1 Classification Test Results	
6. Evaluation Of The Soil Bearing Capacity	14
7. Conclusions And Recommendations	
8. Bibliography	17

LIST OF TABLES

Table 4.1: Laboratory Tests and their Standard test methods	10
Table 5.1: In-situ description of the soil consistency along the existing Jinja –	
Tororo 132 KV electricity transmission line route	12
Table 5.2: In-situ description of the soil consistency along the newly proposed	
Mbarara – Mirama transmission line route	13
Table 6.1: Soil/rock bearing capacities along Jinja – Tororo route	15
Table 6.2: Soil/rock bearing capacities along Mbarara - Mirama route	15

1. INTRODUCTION

At the request of M/S POWER NETWORKS (U) LTD., M/S Teclab Ltd. carried out geo-technical investigations along the electricity interconnection transmission line routes linking Uganda to Kenya and Rwanda through the Jinja - Tororo existing transmission line and the newly proposed Mbarara - Mirama border transmission line respectively.

The purpose of the geo-technical investigations was to determine the nature and incidence of different soil and rock types along the routes in order to obtain suitable geotechnical data for the design of appropriate foundations and earthworks.

The scope of the investigations was as follows;

- i. Excavating test pits to 1.5 and 2.5m depths at 10Km intervals to determine the soil profile along both routes,
- ii. Conducting Dynamic Cone Penetration Tests at 10Km intervals along both routes,
- iii. Carrying out In-situ density tests using the sand replacement method.
- iv. Sampling of soils and rocks for inspection, description and laboratory analysis,
- v. Using the In-situ and Penetration test results obtain a rough estimate of the bearing capacity in accordance with Jennings et al (1973),
- vi. Compiling a technical report.

The site investigations were conducted from the 14th to the 19th of February 2007 and this report forms the key output of the exercise and documents the field/site and laboratory activities that were carried out and the major findings are included in the subsequent chapters. Chapter 2 describes the site, whereas chapters 3 and 4 summarize the field and laboratory work executed respectively. Discussion of the

field and laboratory results is covered in Chapter 5, and Chapter 6 details the evaluation of the bearing capacities. Chapter 7 contains the conclusions.

The detailed field records and laboratory test results are attached as Appendices herein.

2. THE SITE

The Jinja – Tororo site follows the existing 132 KV electricity transmission line that traverses a flat terrain and starts and ends at Bujagali and Tororo Boarder post respectively. The Mbarara – Mirama site in a new alignment traversing a hilly rolling terrain from Mbarara town to Mirama Boarder post.

Geologically, a Precambrian base of granite and gneisses, quartzites, schists, phylites and amphibolites underlie the Jinja – Tororo site. The soils covering the site are derived from the weathering of those underlying rocks. The Mbarara – Mirama site is underlain with Precambrian base of shales and phyllites, mica schist of the Karagwe-Ankolean system with swamp deposits and alluvium of the Holocene system.

The upper profiles of the Jinja – Tororo alignment have brown to red clayey gravels due to the presence of high contents of iron, and they attain a deeper coloration when found near more basic rocks where as the upper profiles of the Mbarara – Mirama alignment have grayish to yellowish clays with traces of brownish fine gravels.

3. FIELD WORK

3.1 General

The field exploratory activities were conducted in accordance with BS 5930: 1981 "Code of Practice for Site Investigations". These included test pit excavation, dynamic cone penetration tests, determining the level of occurrence of ground water, In-situ density tests and sampling of soils.

3.2 Test Pit excavation, Sampling, In-situ density tests and Dynamic Cone Penetration Tests

3.2.1 Test Pit excavation

The use of test pits as an investigation technique offers a quick and economical method for obtaining reliable geotechnical information for a variety of engineering solutions and was favored by the engineer during these investigations.

Twenty (20) test pits were excavated in total, thirteen (13) along Jinja – Tororo and seven (7) along Mbarara – Mirama routes using pick axes, hoes and spades. Test pits were located at 10Km intervals and were excavated to an average depth of 2.0m from the existing ground levels along both sites.

For each test pit the following was carried out:

- Soil profiling and recording the thickness of the existing soil layers.
- Sampling of the existing soil material for classification analysis
- Collecting disturbed samples from depths ranging between of 1.5 and 2.5m.

The existing soil lifts have been determined based on test pit investigations on site and are shown in the test pit excavation logs in *appendix 1*.

3.2.2 Soil and or Rock Sampling

Soils and or rocks were retrieved from the sides of the excavated test pits, visually inspected, labeled and taken for laboratory analysis as disturbed soil samples (D-35).

3.2.3 In-situ density tests

Insitu Density Tests were included in the geotechnical investigation field work programme to determine the degree of compaction of the existing natural and fill material. The sand replacement method was used for this test in accordance with the requirements of BS 1377 Part 9.

The in place dry density was determined by forming a hole in the existing material and dividing the mass of the retrieved soil by the volume of the hole, the latter being determined by filling the hole with fine sand of a known density equal to 1.36 g/cc. The soil retrieved from the hole was dried to a constant mass in the laboratory.

The advantage of this test is that it gives an accurate value of in-situ dry density.

The dry densities were derived in KN/m^3 and used to correlate with the penetration results to obtain rough estimates of bearing capacities.

3.2.4 Dynamic Cone Penetration (DCP) Tests

DCP testing was carried out during dry conditions along both routes.

The DCP equipment used was a "Leonard Farnell and Co." Standard TRRL penetrometer having the following characteristics;

- 8kg falling hammer
- 575 mm drop height
- 60° cone having a diameter of 20mm

A total of twenty (20) DCP tests were carried out with one test in each test pit so as to study the behavior of the underlying soils when subjected to loads.

The penetration tests were carried out to a depth of approximately 1.0m relative to the bottom of each test pit .Generally, the route along Jinja – Tororo presented

difficulties during penetration in some areas unlike along Mbarara – Mirama route.

The results of the DCP test shown in appendix 2 have been converted to CBR values using the following empirical relationships between CBR values and penetration resistance.

Log₁₀ (CBR) =2.632 -1.28 Log₁₀ (Penetration resistance in mm per blow)[Kleyn and Van Heereden]

Log₁₀ (CBR) =2.48 -1.057 Log ₁₀ (Penetration resistance in mm per blow)[TRL]

4. LABORATORY TESTING

Laboratory testing was carried out to further identify the soils and rocks, and obtain parameters for predicting their strength characteristics. Identification tests were done on disturbed soil samples. The tests were conducted according to the standard methods listed in Table 4.1 below.

Table 4.1: Laboratory Tests and their Standard test methods

Name of Test	Standard Test Method	Sample Quality
Moisture content	BS 1377: Part 2: 1990	Disturbed
Particle size distribution	BS 1377: Part 2: 1990	Disturbed
Liquid limit	BS 1377: Part 2: 1990	Disturbed
Plastic limit	BS 1377: Part 2: 1990	Disturbed
Plasticity Index	BS 1377: Part 2: 1990	Disturbed

A full summary of the laboratory test results is presented herein as Appendix 2.

5. INTERPRETATION OF FIELD AND LABORATORY TEST RESULTS

5.1 Field Results

5.1.1 Visual Results

Both sites were investigated up to an average depth of 3.0m with 1.0m covered using a dynamic cone penetrometer starting from the bottom of the excavated test pit. The Jinja – Tororo interconnection transmission line alignment was found to predominantly have gneiss rocks in various degrees of weathering whereas the Mbarara – Mirama interconnection transmission line alignment was found to predominantly have intrusive granites and Precambrian shales and phyllites with some alluvial swamp deposits.

5.1.2 Ground Water

Ground water was encountered in test pits 5, 7 and 8 along Jinja – Tororo route and test pits 2 and 4 along the Mbarara – Mirama route.

5.1.3 Dynamic Cone Penetration Tests (DCP)

On the basis of the DCP tests conducted in each test pit, the Jinja – Tororo and Mbarara Mirama border routes have been categorized into geotechnical units of varying strengths and stiffness as summarized in Tables 5.1 and 5.2 respectively.

Table 5.1: In-situ description of the soil consistency along the existing Jinja – Tororo 220KV electricity transmission line route.

Test Pit No.	Unit No.	Depth of occurrence (m)	Consistency	Description
1	1	0.2-1.2	Medium dense	Weathered gneiss
1	2	1.2-3.0	Very dense	Gneiss
2	1	0.2-3.5	Loose to medium dense	Gravelly Clay
3	1	0.5-1.0	Medium dense	Weathered gneiss
5	2	1.0-2.8	dense	Weathered gneiss
4	1	0.5-2.6	Loose to medium dense	Gravelly Clay
5	1	0.5-3.0	Loose	Sand
6	2	0.2-1.5	Very dense	Weathered gneiss
7	1	0.2-1.5	Medium dense	Sand
8	1	0.1-1.5	Firm	Clay
9	1	0.2-3.0	Dense	Weathered gneiss
10 <u>I</u>	1	0.1-2.0	Very dense	Weathered gneiss
11	1	0.2-1.5	Firm	Clay
	11 2		Medium dense	Clayey Gravel
12	1	0.5-2.6	Medium dense	Weathered gneiss
13	1	0.2-3.5	Medium dense	Gravelly Clay

Test Pit No.	Unit No.	Depth of occurrence (m)	Consistency	Description
1	1	0.2-3.0	Very Firm	Clay
	1	0.2-2.0	Dense	Clay
2	2	2.0-3.0	Loose to medium dense	Sandy Clay
3	1	0.1-1.5	Very dense	Shale
	2	+1.5	Very Stiff	Weathered Precambrian rock
	1	0.2-1.5	Dense	Clay
4 2		1.5-2.5	Loose to medium dense	Sandy Clay
5	1	0.7-1.0	Dense	Coarse grained Gravel
2		1.0-2.0	Dense	Clayey Gravel
6	1	0.1-2.0	Very dense	Clayey Gravel
7	1	0.2-3.0	Very Firm	Clay

Table 5.2: In-situ description of the soil consistency along the newly proposed Mbarara – Mirama transmission line route

5.2 Laboratory Test Results

5.2.1 Classification Test Results

Laboratory classification test results identified the soils along Jinja -Tororo route as gravelly clays of low plasticity and sandy clays with high plasticity which are residual products of weathering of gneiss rock. The Mbarara – Mirama route was found to be predominantly underplayed with clays of a high plasticity. *See Appendix 3 for detailed test results.*

6. EVALUATION OF THE SOIL BEARING CAPACITY

The maximum pressures the soils and rocks are capable of resisting have been estimated from the laboratory test results, soil consistency observations, field dry densities and the bearing ratio values computed using the penetration resistance values that were obtained in the field. In the absence of information regarding the footing dimensions, a 1.0m square footing has been adopted. Further assumptions include the following:

- i) The relationship between penetration resistance values and the allowable bearing pressure of cohesionless soils is valid;
- ii) A Local shear failure mechanism;
- iii) The factor of safety against local shear failure is 3;
- iv) The maximum allowable settlement is 25mm.

The bearing capacity evaluations for Jinja – Tororo and Mbarara – Mirama routes are summarized in Tables 6.1 and 6.2 respectively.

Test Pit No.	Depths (m)	Approximate Bearing Capacity (KPa)
1	1.5	400
2	1.5	150
3	1.5	300
4	1.5	350
5	1.5	200
6	1.5	350
7	1.5	100
8	1.5	150
9	1.5	450
10	1.5	300
11	1.5	350
12	1.5	500
13	1.5	250

Table 6.1: Soil/rock bearing capacities along the Jinja – Tororo route

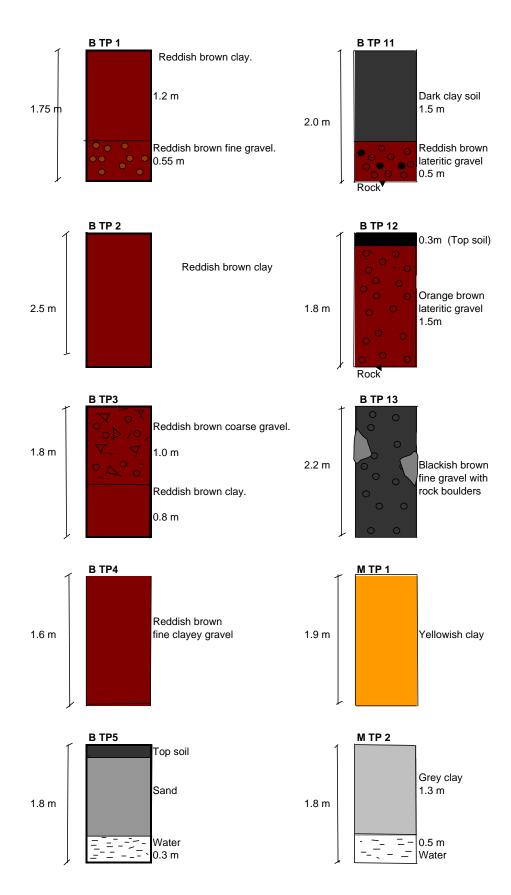
Table 6.2: Soil/rock bearing capacities along the Mbarara - Mirama route

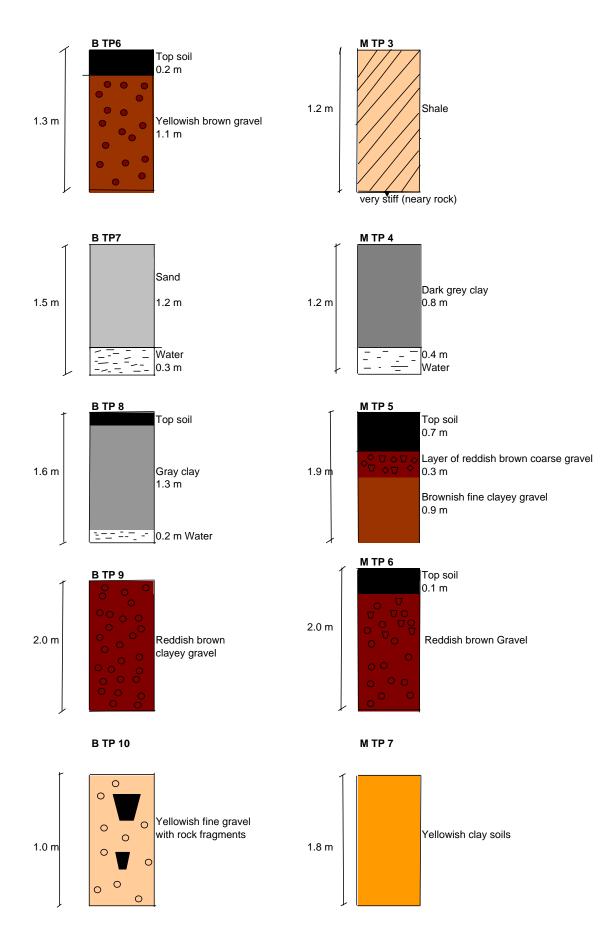
Test Pit No.	Depths (m)	Approximate Bearing Capacity (KPa)
1	1.5	350
2	1.5	200
3	1.5	500
4	1.5	150
5	1.5	300
6	1.5	350
7	1.5	400

The

above are approximate bearing capacities at foundation depths of 1.5m.

7. CONCLUSIONS AND RECOMMENDATIONS


- Jinja Tororo alignment was investigated up to a maximum depth of 3.0m. It was found to contain a gneiss rock exhibiting various degrees of weathering.
- Water table was encountered in test pits 5, 7 and 8 at depths of 1.5m,
 1.2m, and 1.4m respectively along Jinja Tororo route and in test pits 2 and 4 at depths of 1.3m and 0.8m respectively along Mbarara-Mirama. The water table along Jinja Tororo route is lower than the water table along Mbarara Mirama border route.
- iii. The soils along both routes are not likely to loose bearing strengths with slight moisture content increments.
- iv. Evaluations indicate that the soil strata along both routes have unconfined strength values greater than 200 KPa. except for areas dominated by a high water table.
- v. The recommended bearing capacity for a 1.0m square footing at a foundation depth of 1.5 m is 300 KPa.


8. BIBLIOGRAPHY

- BRITISH STANDARDS INSTITUTION. British Standards 1377: 1995 and British Standard 1377: 1990. Methods of Test for Soils for Civil Engineering Purposes, London, 1990.
- ii. BRITISH STANDARDS INSTITUTION. British Standards 5930: 1981. Code of Practice for Site Investigations, London 1981.
- iii. BRAIN VICKERS. Laboratory work in Civil Engineering Soil Mechanics. Granada Publishers, London, 1978.
- iv. G. BRYEN, J.P EVERETT and K. SCHWARTZ. A Guide to Practical Geotechnical Engineering in Southern Africa, Frankipile SA, Third Edition, 1995.
- v. SHENBAGA R. KANIRAJ. Designs Aids in Soil Mechanics and Foundation Engineering. Tata McGraw Publishing Co. Ltd. New Dehli, 1995.

Feasibility Study on Interconnection Transmission Lines Uganda - Kenya and Uganda - Rwanda

Appendix 1

Feasibility Study on Interconnection Transmission Lines Uganda - Kenya and Uganda - Rwanda

Appendix 2

Summary of laboratory test results for the proposed Trial pits/Areas.

						%	pass	ing th	e give	en stand	lard sie	eves				GM	DM	DD		DI	DI		Dry
Sample Identification	Sample Description	75	50	38	20	10	5.0	2.0	1.18	0.600	0.425	0.300	0.212	0.150	0.075	GM	PM	PP	LL	PL	PI	NM	Density
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm				%	%	%	%	Kg/m ³
B TP1	Reddish brown with fine gravel	100	100	100	100	99	85	53	47	44	42	41	40	39	38	1.67	622	562	38.8	24.0	14.8	11.0	1448
B TP2	Reddish brown clay soil	100	100	100	100	100	100	98	98	97	97	97	96	96	95	0.10	2548	2493	51.8	25.5	26.3	26.0	1012
B TP 3	Reddish brown clay soil	100	100	100	100	100	100	97	96	96	95	95	95	95	94	0.14	2662	2623	57.0	29.1	27.9	20.0	1478
B TP4	Reddish brown with fine gravel	100	100	100	100	98	85	68	63	60	59	58	58	57	56	1.16	1921	1824	62.3	29.9	32.4	21.0	1693
B TP5	Sand	100	100	100	100	100	100	99	95	72	57	40	29	18	6	1.37	1433	158	25.5	0.0	25.0	14.0	1431
B TP 6	Gravel: Yellowish brown	100	100	100	97	84	53	31	25	20	18	16	15	14	12	2.39	279	186	34.8	19.4	15.4	11.0	1981
B TP 7	Sand	100	100	100	100	100	100	100	98	94	91	79	52	25	3	1.06	2361	81	26.0	0.0	26.0	13.0	1015
B TP 8	Grey clay															3.00	0	0	34.7	18.1	16.6	17.5	1430
B TP 9	Gravel: Reddish brown	100	100	100	97	92	70	55	51	47	45	42	42	42	40	1.60	948	854	49.7	28.5	21.2	10.5	2024
B TP 10	Yellowish fine gravel with rock fragments	100	100	100	100	99	95	77	60	45	38	34	31	27	24	1.62	900	564	24.0	0.0	24.0	7.2	1332
B TP 11	Lateritic gravel	100	100	100	92	76	57	42	37	33	31	29	27	25	23	2.03	939	702	30.0	0.0	30.0	9.2	
B TP 12	Lateritic gravel	100	100	100	100	83	54	33	28	24	23	21	20	18	16	2.28	740	507	32.3	0.0	32.3	9.5	
B TP 13	Dark fine gravel	100	100	100	98	94	77	35	32	31	31	29	28	26	24	2.11	354	273	30.1	18.5	11.6	11.5	1627
M TP 1	Yellowish Brown clay soils	100	100	100	100	100	99	97	96	92	91	87	81	72	64	0.49	1330	938	36.0	21.3	14.7	11.0	1803
M TP 2	Grey clay															3.00	0	0	24.2	10.8	13.4	20.0	1521
M TP 3	Shale material															3.00	0	0	25.0	0.0	25.0	16.6	
M TP 4	Dark grey clay															3.00	0	0	62.5	25.0	37.5	47.2	1047
M TP 5	Brownish gravelly material	. 100	100	100	100	95	91	83	80	77	75	74	71	67	62	0.80	1175	969	48.3	32.7	15.6	20.0	1196
M TP 6	Gravel: reddish brown	100	100	100	97	89	77	65	61	50	42	38	36	33	31	1.62	475	350	32.8	21.6	11.3	13.0	1272
M TP 7	Yellowish brown clay soils	100	100	100	100	100	100	100	98	94	91	79	52	25	3	1.06	1044	36	27.1	15.1	11.5	11.0	1737

 Key:
 GM- Grading modulus
 PL-Plastic limit
 LL-Liquid limit

 PM-Plasiticity modulus
 PI-Placiticity index
 PI-Placiticity index

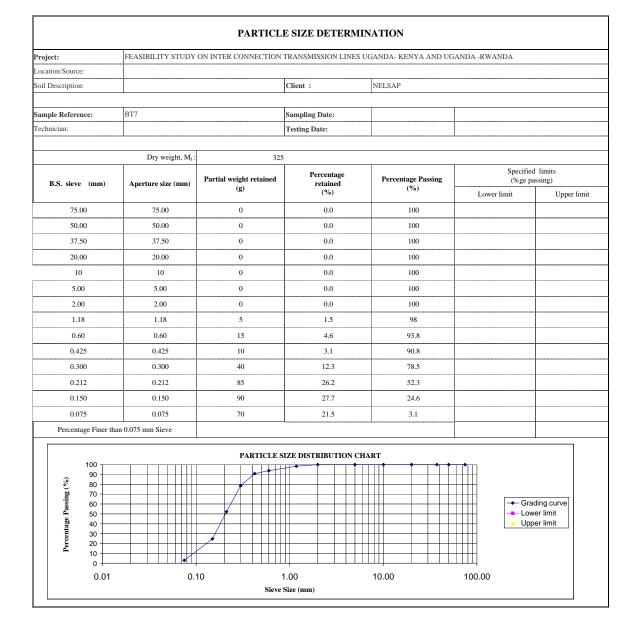
 PP-Plasiticity product
 NM- Natural moisture

Appendix 3

roject:	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES UC	GANDA- KENYA AND UC	GANDA -RWANDA	
ocation/Source:	B TP1					
oil Description:			Client :	NELSAP		
	•		•			
ample Reference:			Sampling Date:			
echnician:			Testing Date:			
	Derumisht M.	1700				
B.S. sieve (mm)	Dry weight, M ₃ : Aperture size (mm)	1500 Partial weight retained	Percentage retained	Percentage Passing		ed limits passing)
b.s. seve (mm)	Aperture size (mm)	(g)	(%)	(%)	Lower limit	Upper limit
75.00	75.00	0	0.0	100		
50.00	50.00	0	0.0	100		
37.50	37.50	0	0.0	100		
20.00	20.00	0	0.0	100		
10	10	15	1.0	99		
5.00	5.00	210	14.0	85		
2.00	2.00	480	32.0	53		
1.18	1.18	85	5.7	47		
0.60	0.60	55	3.7	44		
0.425	0.425	20	1.3	42		
0.300	0.300	15	1.0	41		
0.212	0.212	20	1.3	40		
0.150	0.150	10	0.7	39		
0.075	0.075	20	1.3	38		
Percentage Finer than	n 0.075 mm Sieve		38.0			
		PAPTICI E S	IZE DISTRIBUTION CHA	рт		
100		FARITCLES			••_	
€ 90 € 80				, 		
월 70 					++++++	
						ading curve
d 50 38 40						oper limit
30						·
20					-++++	
0.01	0.1	0	1.00	10.00	100.00	

		PARTICL	E SIZE DETERMIN	ATION		
roject:	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES U	GANDA- KENYA AND UG	GANDA -RWANDA	
ocation/Source:						
oil Description:			Client :	NELSAP		
mple Reference:	BT 2		Sampling Date:			
chnician:			Testing Date:			
	Dry weight, M3:	700)			
B.S. sieve (mm)	Aperture size (mm)	Partial weight retained (g)	Percentage retained	Percentage Passing (%)	(%ge	ed limits passing)
		_	(%)		Lower limit	Upper limit
75.00	75.00	0	0.0	100		
50.00	50.00	0	0.0	100		
37.50	37.50	0	0.0	100		
20.00	20.00	0	0.0	100		
10	10	0	0.0	100		
5.00	5.00	0	0.0	100		
2.00	2.00	3.4	0.5	100		
1.18	1.18	9.8	1.4	98		
0.60	0.60	4.5	0.6	97.5		
0.425	0.425	2.1	0.3	97.2		
0.300	0.300	1.8	0.3	96.9		
0.212	0.212	3.4	0.5	96.4		
0.150	0.150	5	0.7	95.7		
0.075	0.075	6.4	0.9	94.8		
Percentage Finer than	0.075 mm Sieve		94.8			
		PARTICLE S	IZE DISTRIBUTION CHA	RT		
Detreentage Passing (%)	•				Lo	ading curve wer limit sper limit
0.01	0.1		' 1.00 Size (mm)	10.00	100.00	

		PARTICL	E SIZE DETERMIN	ATION		
roject:	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES U	GANDA- KENYA AND UG	GANDA -RWANDA	
ocation/Source:						
oil Description:			Client :	NELSAP		
ample Reference:	BT 3		Sampling Date:			
echnician:			Testing Date:			
	Dry weight, M3:	600	<u></u>			
B.S. sieve (mm)	Aperture size (mm)	Partial weight retained	Percentage retained	Percentage Passing		ed limits passing)
	-	(g)	(%)	(%)	Lower limit	Upper limit
75.00	75.00	0	0.0	100		
50.00	50.00	0	0.0	100		
37.50	37.50	0	0.0	100		
20.00	20.00	0	0.0	100		
10	10	0	0.0	100		
5.00	5.00	0	0.0	100		
2.00	2.00	20	3.3	97		
1.18	1.18	3	0.5	96		
0.60	0.60	4	0.7	95.5		
0.425	0.425	0.5	0.1	95.4		
0.300	0.300	1	0.2	95.3		
0.212	0.212	1.3	0.2	95.0		
0.150	0.150	1.7	0.3	94.8		
0.075	0.075	4.5	0.8	94.0		
Percentage Finer than	0.075 mm Sieve		94.0			
		PARTICLE S	IZE DISTRIBUTION CHA	RT		
Percentage Passing (%)	•					rading curve wer limit oper limit
90 0.01	0.1		1.00 Size (mm)	10.00	100.00	

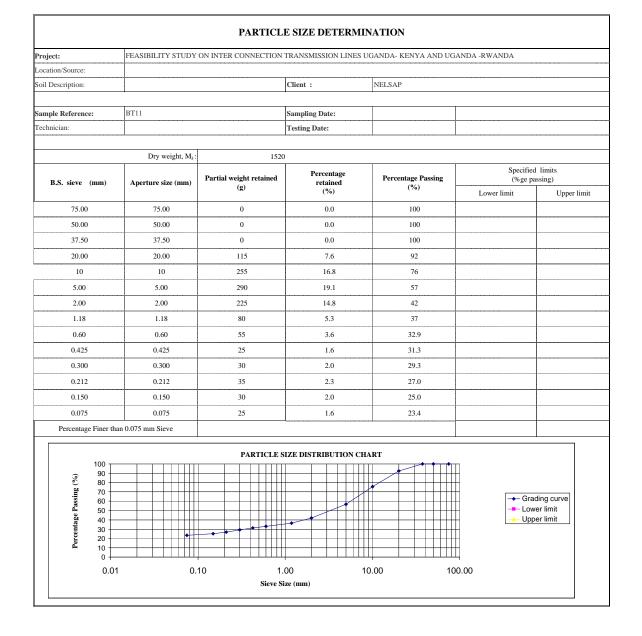

roject:	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES UC	GANDA- KENYA AND UC	GANDA -RWANDA	
ocation/Source:						
Soil Description:			Client :	NELSAP		
	•		•			
Sample Reference:	BT 4		Sampling Date:			
Fechnician:			Testing Date:			
	Dry weight, M ₃ :	1400	1		Surviți.	d limite
B.S. sieve (mm)	Aperture size (mm)	Partial weight retained	Percentage retained	Percentage Passing	Specifie (%ge p	
		(g)	(%)	(%)	Lower limit	Upper limit
75.00	75.00	0	0.0	100		
50.00	50.00	0	0.0	100		
37.50	37.50	0	0.0	100		
20.00	20.00	0	0.0	100		
10	10	30	2.1	98		
5.00	5.00	175	12.5	85		
2.00	2.00	240	17.1	68		
1.18	1.18	70	5.0	63		
0.60	0.60	45	3.2	60.0		
0.425	0.425	10	0.7	59.3		
0.300	0.300	12	0.9	58.4		
0.212	0.212	10	0.7	57.7		
0.150	0.150	10	0.7	57.0		
0.075	0.075	10	0.7	56.3		
Percentage Finer that	n 0.075 mm Sieve		56.3			
100		PARTICLE S	IZE DISTRIBUTION CHA			
90 80 80					++++	
0% 80 0 70 0 60 0 0 0 0 0 0						
						ading curve
50						ver limit
80 40						per limit
a 30 20						
A 10					++++	
0						
0.01	0.1		1.00	10.00	100.00	
		Sieve	Size (mm)			

oject:	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES UC	GANDA- KENYA AND UG	GANDA -RWANDA	
ocation/Source:						
oil Description:			Client :	NELSAP		
ample Reference:	BT5		Sampling Date:			
echnician:			Testing Date:			
	Dry weight, M3:	480)			
			Percentage		Specific	ed limits
B.S. sieve (mm)	Aperture size (mm)	Partial weight retained (g)	retained	Percentage Passing (%)	(%ge]	passing)
			(%)	(,,,)	Lower limit	Upper limit
75.00	75.00	0	0.0	100		
50.00	50.00	0	0.0	100		
37.50	37.50	0	0.0	100		
20.00	20.00	0	0.0	100		
10	10	0	0.0	100		
5.00	5.00	0	0.0	100		
2.00	2.00	5	1.0	99		
1.18	1.18	20	4.2	95		
0.60	0.60	110	22.9	71.9		
0.425	0.425	70	14.6	57.3		
0.300	0.300	85	17.7	39.6		
0.212	0.212	50	10.4	29.2		
0.150	0.150	55	11.5	17.7		
0.075	0.075	55	11.5	6.3		
Percentage Finer	than 0.075 mm Sieve					
		PARTICLE S	IZE DISTRIBUTION CHA	RT		
100 90						
8 80						
Percentage Passing (%)						ading curve
Sse 60						wer limit
a6 40 -						per limit
5 30 -					++++	
A 20 - 10 -						
0 T						
0.01	0.	10	1.00	10.00	100.00	
		Siora	Size (mm)			

S.P Kisitu For Teclab Ltd

roject:	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES U	IGANDA- KENYA AND UC	GANDA -RWANDA	
ocation/Source:						
il Description:			Client :	NELSAP		
ample Reference:	BT6		Sampling Date:			
echnician:			Testing Date:			
	Dry weight, M3:	2000)	1	1	
B.S. sieve (mm)	Aperture size (mm)	Partial weight retained	Percentage retained	Percentage Passing		ed limits bassing)
D.S. sieve (iiiii)	Aperture size (mm)	(g)	(%)	(%)	Lower limit	Upper limit
75.00	75.00	0	0.0	100		
50.00	50.00	0	0.0	100		
37.50	37.50	0	0.0	100		
20.00	20.00	60	3.0	97		
10	10	165	8.3	89		
5.00	5.00	240	12.0	77		
2.00	2.00	235	11.8	65		
1.18	1.18	75	3.8	61		
0.60	0.60	225	11.3	50.0		
0.425	0.425	145	7.3	42.8		
0.300	0.300	90	4.5	38.3		
0.212	0.212	55	2.8	35.5		
0.150	0.150	45	2.3	33.3		
0.075	0.075	45	2.3	31.0		
Percentage Finer	han 0.075 mm Sieve					
					1	
100		PARTICLE S	SIZE DISTRIBUTION CH	ART		
90 -					++++	
%) 80						
-iis 60					Gra	ading curve
4 50 –			1			wer limit
80 40 -						per limit
Percentage Passing (%)					++++	
20						
0.01	0.1	10 .	1.00	10.00	100.00	
			Size (mm)			

S.P Kisitu For Teclab Ltd



oject: cation/Source: il Description: mple Reference:	FEASIBILITTSTUDT	ON INTER CONNECTION				
il Description:			TRANSMISSION EINES O	GANDA- KENTA AND UC	JANDA -KWANDA	
			GIL 4	NELCAR		
mula Dafavanaa			Client :	NELSAP		
	B TP 8		Sampling Date:			
chnician:			Testing Date:			
			resting butch			
	Dry weight, M3:					
B.S. sieve (mm)	Aperture size (mm)	Partial weight retained (g)	Percentage retained	Percentage Passing (%)	(%ge p	ed limits passing)
			(%)		Lower limit	Upper limit
75.00	75.00	0	#DIV/0!	#DIV/0!		
50.00	50.00	0	#DIV/0!	#DIV/0!		
37.50	37.50	0	#DIV/0!	#DIV/0!		
20.00	20.00	0	#DIV/0!	#DIV/0!		
10	10	0	#DIV/0!	#DIV/0!		
5.00	5.00	0	#DIV/0!	#DIV/0!		
2.00	2.00	0	#DIV/0!	#DIV/0!		
1.18	1.18	5	#DIV/0!	#DIV/0!		
0.60	0.60	15	#DIV/0!	#DIV/0!		
0.425	0.425	10	#DIV/0!	#DIV/0!		
0.300	0.300	40	#DIV/0!	#DIV/0!		
0.212	0.212	85	#DIV/0!	#DIV/0!		
0.150	0.150	90	#DIV/0!	#DIV/0!		
0.075	0.075	70	#DIV/0!	#DIV/0!		
Percentage Finer th	an 0.075 mm Sieve					
				DE		
100		PARTICLES	SIZE DISTRIBUTION CHA			
\$ 90 \$ 80					++++	
9 80 9 70						
Percentage Passing (%)						ading curve
4 50 -						wer limit
66 40						per limit
30 20						
a 20 10					++++	
0 		┣_ ┣_ ┣_ ┣ ↓ ↓ ↓ ↓	╨┥╸╺┥╴╵╵╺┥╵	└╵└╇╶╴┝╺┠╺┝		
0.01	0.1	10	1.00	10.00	100.00	

roject:	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES U	GANDA- KENYA AND UC	GANDA -RWANDA	
ocation/Source:						
oil Description:			Client :	NELSAP		
	Inmo				1	
ample Reference:	BT9		Sampling Date:			
ecnnician:			Testing Date:			
	Dry weight, M3:	1500)			
B.S. sieve (mm)	Aperture size (mm)	Partial weight retained (g)	Percentage retained	Percentage Passing (%)	(%ge	ed limits passing)
			(%)		Lower limit	Upper limit
75.00	75.00	0	0.0	100		
50.00	50.00	0	0.0	100		
37.50	37.50	0	0.0	100		
20.00	20.00	40	5.7	97	1	
5.00	5.00	240 310	20.7	55		
1.18	1.18	65	4.3	51		
0.60	0.60	60	4.0	46.7		-
0.425	0.425	30	2.0	44.7		
0.300	0.300	35	2.3	42.3		
0.212	0.212	5	0.3	42.0		
0.150	0.150	5	0.3	41.7		
0.075	0.075	20	1.3	40.3		
Percentage Finer the	an 0.075 mm Sieve		<u> </u>			
					1	
100		PARTICLE S	SIZE DISTRIBUTION CH.	ART		
Percentage Passing (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• •					ading curve wer limit yper limit
0.01	0.1		1.00 Size (mm)	10.00	100.00	

oject:	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES U	GANDA- KENYA AND UC	GANDA -RWANDA	
ocation/Source:						
oil Description:			Client :	NELSAP		
	1			II.		
ample Reference:	BT10		Sampling Date:			
echnician:			Testing Date:			
	Dry weight, M3:	2000		1	1	
B.S. sieve (mm) Aperture size (mm)	Partial weight retained	Percentage retained	Percentage Passing		ed limits passing)
D.S. sieve (iiiii		(g)	(%)	(%)	Lower limit	Upper limit
75.00	75.00	0	0.0	100		
50.00	50.00	0	0.0	100		
37.50	37.50	0	0.0	100		
20.00	20.00	0	0.0	100		
10	10	25	1.3	99		
5.00	5.00	80	4.0	95		
2.00	2.00	350	17.5	77		
1.18	1.18	340	17.0	60		
0.60	0.60	310	15.5	44.8		
0.425	0.425	145	7.3	37.5		
0.300	0.300	80	4.0	33.5		
0.212	0.212	60	3.0	30.5		
0.150	0.150	65	3.3	27.3		
0.075	0.075	75	3.8	23.5		
Percentage Fine	er than 0.075 mm Sieve					
100 T		PARTICLE S	IZE DISTRIBUTION CHA			
90 -					++++	
്) 80 - ജ 70 -						
- 60 -					Gra	ading curve
E 50 -						wer limit
រីខ្មា 40 -						per limit
Percentage Passing (%) - 00 Passing (%) - 01 Passing (%) - 02 Passing (%)					++++	
- 02 -						
10 - 0 -						
0.0)1 0.1	10 1	1.00	10.00	100.00	
-			Size (mm)			

S.P Kisitu For Teclab Ltd

	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES UC	GANDA- KENYA AND UG	GANDA -RWANDA	
cation/Source:						
il Description:			Client :	NELSAP		
	•		1	1		
mple Reference:	BT12		Sampling Date:			
chnician:			Testing Date:			
	Dry weight, M3:	700	<u></u>			
PS giorg (mm)	Aperture size (mm)	Partial weight retained	Percentage retained	Percentage Passing		d limits assing)
B.S. sieve (mm)	Aperture size (mm)	(g)	(%)	(%)	Lower limit	Upper limit
75.00	75.00	0	0.0	100		
50.00	50.00	0	0.0	100		
37.50	37.50	0	0.0	100		
20.00	20.00	0	0.0	100		
10	10	120	17.1	83		
5.00	5.00	205	29.3	54		
2.00	2.00	145	20.7	33		
1.18	1.18	35	5.0	28		
0.60	0.60	25	3.6	24.3		
0.425	0.425	10	1.4	22.9		
0.300	0.300	10	1.4	21.4		
0.212	0.212	10	1.4	20.0		
0.150	0.150	15	2.1	17.9		
0.075	0.075	15	2.1	15.7		
Percentage Finer that	n 0.075 mm Sieve					
		PARTICLE S	IZE DISTRIBUTION CHA	RT		
100 90						
80						
Percentage Passing (%)				1	Gra	ading curve
60 60 60 60 60 60 60 60 60 60 60 60 60 6						wer limit
a 40	┟─┟┟┟┟╎╎╟─			+++-+++	Up	per limit
30					-+++++	
20 4 10						
0						
0.01	0.10	1	.00	10.00	100.00	

	roject:	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES UC	GANDA- KENYA AND UC	GANDA -RWANDA	
Image Reference: BT13 Sampling Date: Image Reference: BT13 Sampling Date: Image Reference: Image Refer	ocation/Source:						
Image: character in the second of	oil Description:			Client :	NELSAP		
Image: character in the second of		•		•			
Dry weight, M ₂ : 2150 B.S. sieve (nm) Aperture size (nm) Partial weight retained (g) Percentage retained (%) Percentage Passing (%) Specified limits (%ge passing) 75.00 75.00 0 0.0 100 1 37.50 37.50 0 0.0 100 1 20.00 20.00 40 1.9 98 1 10 10 80 3.7 94 1 2.00 2.00 895 41.6 35 1 1.18 1.18 70 3.3 32 1 1 0.66 0.66 25 1.2 30.9 1 1 0.425 0.0 5.0 2.3 25.6 1 1 0.425 0.075 45 2.1 23.5 1 1 0.425 0.10 0.5 3.5 1 1 1 1 1 1 1 1 1 1 1 1	ample Reference:	BT13		Sampling Date:			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fechnician:			Testing Date:			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
B.S. sive (nm) Aperture size (nm) Partial weight retaining (g) Percentage Passing (%) Percentage Passing (%) (0)		Dry weight, M ₃ :	2150	1		Specific	1 limite
Image: Constraint of the second sec	B.S. sieve (mm)	Aperture size (mm)					
50.00 50.00 0 0 0.0 100 100 37.50 37.50 0 0.0 100 <td></td> <td></td> <td>(g)</td> <td>(%)</td> <td>(%)</td> <td>Lower limit</td> <td>Upper limit</td>			(g)	(%)	(%)	Lower limit	Upper limit
37.50 37.50 0 0.0 100 100 20.00 20.00 40 1.9 98 10 10 10 80 3.7 94 10 5.00 5.00 375 17.4 77 10 2.00 2.00 895 41.6 35 10 1.18 1.18 70 3.3 32 10 0.60 0.60 25 1.2 30.9 10 0.425 0.425 10 0.5 30.5 11 0.300 0.300 25 1.2 29.3 11 0.150 0.150 50 2.3 25.6 11 0.150 0.150 50 2.3 25.6 11 0.075 0.075 45 2.1 23.5 11 0.000 0.075 m Sieve 10 10 10 10 10 0.000 0.075 45 2.1 23.5 10 10 10 10 10 10 10 10 10	75.00	75.00	0	0.0	100		
20.00 20.00 40 1.9 98 10 10 80 3.7 94 5.00 5.00 375 17.4 77 2.00 2.00 895 41.6 35 1.18 1.18 70 3.3 32 0.60 0.60 25 1.2 30.9 0.425 0.425 10 0.5 30.5	50.00	50.00	0	0.0	100		
10 10 80 3.7 94	37.50	37.50	0	0.0	100		
5.00 5.00 375 17.4 77	20.00	20.00	40	1.9	98		
2.00 2.00 895 41.6 35	10	10	80	3.7	94		
1.18 1.18 70 3.3 32	5.00	5.00	375	17.4	77		
0.60 0.60 25 1.2 30.9	2.00	2.00	895	41.6	35		
0.425 0.425 10 0.5 30.5 0.300 0.300 25 1.2 29.3 0.212 0.212 30 1.4 27.9 0.150 0.150 50 2.3 25.6 0.075 0.075 45 2.1 23.5 Percentage Finer than 0.075 mm Sive	1.18	1.18	70	3.3	32		
0.300 0.300 25 1.2 29.3 0.212 0.212 30 1.4 27.9 0.150 0.150 50 2.3 25.6 0.075 0.075 45 2.1 23.5 Percentage Finer than 0.075 mm Sieve Particle Size DISTRIBUTION CHART Caracing curve Curver limit Curver limi	0.60	0.60	25	1.2	30.9		
0.212 0.212 30 1.4 27.9 0.150 0.150 50 2.3 25.6 0.075 0.075 45 2.1 23.5 Percentage Finer than 0.075 mm Sieve	0.425	0.425	10	0.5	30.5		
0.150 0.150 50 2.3 25.6 0.075 0.075 45 2.1 23.5 Percentage Finer than 0.075 mm Sieve Percentage Finer than 0.075 mm Sieve PARTICLE SIZE DISTRIBUTION CHART Output Output Output Output Output Output Particle Size DISTRIBUTION CHART Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output	0.300	0.300	25	1.2	29.3		
0.075 0.075 45 2.1 23.5 Percentage Finer than 0.075 mm Sieve	0.212	0.212	30	1.4	27.9		
Percentage Finer than 0.075 mm Sieve	0.150	0.150	50	2.3	25.6		
PARTICLE SIZE DISTRIBUTION CHART	0.075	0.075	45	2.1	23.5		
A Crading curve	Percentage Finer that	n 0.075 mm Sieve					
A Crading curve							
80	100		PARTICLES	IZE DISTRIBUTION CHA			
	90						
	e) 80 e 70						
	is 60			+ /	++++		
	a 50				++++		
	8 40						
	30 2 20						
	a 10						
		0.10		1.00	10.00	100.00	

roject:	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES UC	GANDA- KENYA AND UC	GANDA -RWANDA	
ocation/Source:						
oil Description:			Client :	NELSAP		
	-		1	4		
ample Reference:	M TP 1		Sampling Date:			
echnician:			Testing Date:			
	Dry weight, M3:	600	1			
B.S. sieve (mm)	Aperture size (mm)	Partial weight retained	Percentage retained	Percentage Passing	Specified (%ge pa	
		(g)	(%)	(%)	Lower limit	Upper limit
75.00	75.00	0	0.0	100		
50.00	50.00	0	0.0	100		
37.50	37.50	0	0.0	100		
20.00	20.00	0	0.0	100		
10	10	0	0.0	100		
5.00	5.00	5	0.8	99		
2.00	2.00	12	2.0	97		
1.18	1.18	10	1.7	96		
0.60	0.60	20	3.3	92.2		
0.425	0.425	10	1.7	90.5		
0.300	0.300	20	3.3	87.2		
0.212	0.212	35	5.8	81.3		
0.150	0.150	55	9.2	72.2		
0.075	0.075	50	8.3	63.8		
Percentage Finer that	n 0.075 mm Sieve					
					•	
100		PARTICLE S	IZE DISTRIBUTION CHA	RT	┱═╋═┲═╋┎╼┱╕	
90						
Borner Borner 60 50 50 40 30 30 20 30						
	•			++++		iding curve ver limit
4 50 -						per limit
be 40						
30 20						
a 20 10					$\left + + + + + + + \right $	
0						
0.01	0.10		1.00	10.00	100.00	

oject:	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES U	GANDA- KENYA AND UC	GANDA -RWANDA	
cation/Source:						
oil Description:			Client :	NELSAP		
	-			1		
Sample Reference:	M TP 1		Sampling Date:			
Fechnician:			Testing Date:			
	Dry weight, M3:	0)			
		Partial weight retained	Percentage	Percentage Passing		ed limits passing)
B.S. sieve (mm)	Aperture size (mm)	(g)	retained (%)	(%)	Lower limit	Upper limit
75.00	75.00	0	#DIV/0!	#DIV/0!		
50.00	50.00	0	#DIV/0!	#DIV/0!		
37.50	37.50	0	#DIV/0!	#DIV/0!		
20.00	20.00	0	#DIV/0!	#DIV/0!		
10	10	0	#DIV/0!	#DIV/0!		
5.00	5.00	5	#DIV/0!	#DIV/0!		
2.00	2.00	12	#DIV/0!	#DIV/0!		
1.18	1.18	10	#DIV/0!	#DIV/0!		
0.60	0.60	20	#DIV/0!	#DIV/0!		
0.425	0.425	10	#DIV/0!	#DIV/0!		
0.300	0.300	20	#DIV/0!	#DIV/0!		
0.212	0.212	35	#DIV/0!	#DIV/0!		
0.150	0.150	55	#DIV/0!	#DIV/0!		
0.075	0.075	50	#DIV/0!	#DIV/0!		
Percentage Finer th	an 0.075 mm Sieve		J.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
					1	
100		PARTICLE S	SIZE DISTRIBUTION CH	ART		
Percentage Passing (%)						
.ii 70						rading curve ower limit
4 50						oper limit
a 40 10 10 30						
20						
<mark>ط</mark> 10						
0 +		· · · · · · · · · · · · · · · · · · ·	 ◆ 	└╵╵╇╶──╺┡╵╺╋		
0.01	0.10		.00	10.00	100.00	
		Sieve S	ize (mm)			

S.P Kisitu For Teclab Ltd

Project:	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES UC	GANDA- KENYA AND UC	GANDA -RWANDA	
.ocation/Source:						
Soil Description:			Client :	NELSAP		
	*		•			
Sample Reference:	M TP 1		Sampling Date:			
Fechnician:			Testing Date:			
	D					
	Dry weight, M3:	1475	1		Specified	Llimite
B.S. sieve (mm)	Aperture size (mm)	Partial weight retained	Percentage retained	Percentage Passing	(% ge pa	
···· · · · · · · · · · · · · · · · · ·		(g)	(%)	(%)	Lower limit	Upper limit
75.00	75.00	0	0.0	100		
50.00	50.00	0	0.0	100		
37.50	37.50	0	0.0	100		
20.00	20.00	0	0.0	100		
10	10	70	4.7	95		
5.00	5.00	65	4.4	91		
2.00	2.00	110	7.5	83		
1.18	1.18	45	3.1	80		
0.60	0.60	45	3.1	77.3		
0.425	0.425	30	2.0	75.3		
0.300	0.300	25	1.7	73.6		
0.212	0.212	35	2.4	71.2		
0.150	0.150	60	4.1	67.1		
0.075	0.075	65	4.4	62.7		
Percentage Finer that	n 0.075 mm Sieve					
100		PARTICLE S	SIZE DISTRIBUTION CHA			
90						
Percentage Passing (%)						
		≁			Grad	ding curve
ed 50						er limit
8 40						
30 20						
a 20 10						
0						
0.01	0.10	1	1.00	10.00	100.00	
		Sieve	Size (mm)			

Ample Reference: M TP 6 Sampling Date: Image: Control of the second	oject:	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES U	JGANDA- KENYA AND UC	GANDA -RWANDA	
M TP 6 Sampling Date: Image: Contract of the second secon							
Technician: Testing Date: Dry weight, M ₁ : 1770 B.S. sieve (nm) Aperture size (nm) Partial weight retained (g) Percentage retained (g) Percentage retained (%) Percentage Passing (%) Specified limits (%ge passing) 75.00 75.00 0 0.0 100 100 100 37.50 37.50 0 0.0 100 100 100 20.00 20.00 45 2.5 97 10 10 235 13.3 84 11 <t< td=""><td>il Description:</td><td></td><td></td><td>Client :</td><td>NELSAP</td><td></td><td></td></t<>	il Description:			Client :	NELSAP		
Technician: Testing Date: Dry weight, M ₁ : 1770 B.S. sieve (nm) Aperture size (nm) Partial weight retained (g) Percentage retained (g) Percentage retained (%) Percentage Passing (%) Specified limits (%ge passing) 75.00 75.00 0 0.0 100 100 100 37.50 37.50 0 0.0 100 100 100 20.00 20.00 45 2.5 97 10 10 235 13.3 84 11 <t< td=""><td></td><td>1</td><td></td><td></td><td>L</td><td></td><td></td></t<>		1			L		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mple Reference:	M TP 6		Sampling Date:			
B.S. sieve (nm) Aperture size (nm) Partial weight retained (g) Percentage retained (%) Percentage Passing (%) Specified limits (%ge passing) 75.00 75.00 0 0.0 100 100 100 50.00 50.00 0 0.0 100 100 100 37.50 37.50 0 0.00 100 100 100 20.00 20.00 45 2.5 97 10 10 10 10 235 13.3 84 100 100 2.00 2.00 390 22.0 31 10 10 1.18 1.18 105 5.9 25 10 10 0.425 0.425 35 2.0 18.1 10 10 0.300 0.300 35 2.0 16.1 10 10 0.425 0.425 35 2.0 16.1 10 10 0.150 0.150 20 1.1 13.	chnician:			Testing Date:			
B.S. sieve (nm) Aperture size (nm) Partial weight retained (g) Percentage retained (%) Percentage Passing (%) Specified limits (%ge passing) 75.00 75.00 0 0.0 100 100 100 50.00 50.00 0 0.0 100 100 100 37.50 37.50 0 0.00 100 100 100 20.00 20.00 45 2.5 97 10 10 10 10 235 13.3 84 100 100 2.00 2.00 390 22.0 31 10 10 1.18 1.18 105 5.9 25 10 10 0.425 0.425 35 2.0 18.1 10 10 0.300 0.300 35 2.0 16.1 10 10 0.425 0.425 35 2.0 16.1 10 10 0.150 0.150 20 1.1 13.							
B.S. sieve (mm) Aperture size (mm) Partial weight retained (g) Partial weight retained (%) Percentage Passing (%) (%)		Dry weight, M ₃ :	1770)			
Image: Constraint of the second sec	RS sieve (mm)	A perture size (mm)					
50.00 50.00 0 0.0 100 100 37.50 37.50 0 0.0 100 </td <td></td> <td>(intervence once (intervence)</td> <td>(g)</td> <td></td> <td>(%)</td> <td>Lower limit</td> <td>Upper limi</td>		(intervence once (intervence)	(g)		(%)	Lower limit	Upper limi
37.50 37.50 0 0.0 100 100 20.00 20.00 45 2.5 97 10 10 10 235 13.3 84 11 5.00 5.00 545 30.8 53 11 2.00 2.00 390 22.0 31 11 1.18 1.18 105 5.9 25 11 0.60 0.60 95 5.4 20.1 11 0.425 0.425 35 2.0 18.1 11 11 0.300 0.300 35 2.0 16.1 11 11 0.150 0.150 20 1.1 13.6 11 13.6 0.075 0.075 25 1.4 12.1 11 12.1 11 PARTICLE SIZE DISTRIBUTION CHART 100 90 90 90 90 11 12.1 11	75.00	75.00	0	0.0	100		
20.00 20.00 45 2.5 97 10 10 235 13.3 84	50.00	50.00	0	0.0	100		
10 10 235 13.3 84 5.00 5.00 545 30.8 53 2.00 2.00 390 22.0 31 1.18 1.18 105 5.9 25 0.60 0.60 95 5.4 20.1	37.50	37.50	0	0.0	100		
5.00 5.00 545 30.8 53 2.00 2.00 390 22.0 31 1 1.18 1.18 105 5.9 25 1 0.60 0.60 95 5.4 20.1 1 0.425 0.425 35 2.0 18.1 1 0.300 0.300 35 2.0 16.1 1 0.150 0.150 20 1.1 13.6 1 0.075 0.075 25 1.4 12.1 1 PARTICLE SIZE DISTRIBUTION CHART	20.00	20.00	45	2.5	97		
2.00 2.00 390 22.0 31 1.18 1.18 105 5.9 25 1 0.60 0.60 95 5.4 20.1 1 0.425 0.425 35 2.0 18.1 1 0.300 0.300 35 2.0 16.1 1 0.212 0.212 25 1.4 14.7 1 0.150 0.150 20 1.1 13.6 1 0.75 0.075 25 1.4 12.1 1 PARTICLE SIZE DISTRIBUTION CHART 100 90 90 90 1 1	10	10	235	13.3	84		
1.18 1.18 105 5.9 25 100 0.60 0.60 95 5.4 20.1 100 0.425 0.425 35 2.0 18.1 100 0.300 0.300 35 2.0 16.1 100 0.212 0.212 25 1.4 14.7 100 0.150 0.150 20 1.1 13.6 100 0.075 0.075 25 1.4 12.1 100 PARTICLE SIZE DISTRIBUTION CHART 100 90<	5.00	5.00	545	30.8	53		
0.60 0.60 95 5.4 20.1 0.425 0.425 35 2.0 18.1 1 0.300 0.300 35 2.0 16.1 1 0.212 0.212 25 1.4 14.7 1 0.150 0.150 20 1.1 13.6 1 0.075 0.075 25 1.4 12.1 1 PARTICLE SIZE DISTRIBUTION CHART 100 90 90 90 90 90 90 90	2.00	2.00	390	22.0	31		
0.425 0.425 35 2.0 18.1 0.300 0.300 35 2.0 16.1 0.212 0.212 25 1.4 14.7 0.150 0.150 20 1.1 13.6 0.075 0.075 25 1.4 12.1	1.18	1.18	105	5.9	25		
0.300 0.300 35 2.0 16.1 0.212 0.212 25 1.4 14.7 0.150 0.150 20 1.1 13.6 0.075 0.075 25 1.4 12.1 Percentage Finer than 0.075 mm Sieve PARTICLE SIZE DISTRIBUTION CHART	0.60	0.60	95	5.4	20.1		
0.212 0.212 25 1.4 14.7 0.150 0.150 20 1.1 13.6 0.075 0.075 25 1.4 12.1 Percentage Finer than 0.075 mm Sieve	0.425	0.425	35	2.0	18.1		
0.150 0.150 20 1.1 13.6 0.075 0.075 25 1.4 12.1 Percentage Finer than 0.075 mm Sieve PARTICLE SIZE DISTRIBUTION CHART 100 90 0	0.300	0.300	35	2.0	16.1		
0.075 0.075 25 1.4 12.1 Percentage Finer than 0.075 mm Sieve PARTICLE SIZE DISTRIBUTION CHART	0.212	0.212	25	1.4	14.7		
Percentage Finer than 0.075 mm Sieve PARTICLE SIZE DISTRIBUTION CHART 100 90	0.150	0.150	20	1.1	13.6		
PARTICLE SIZE DISTRIBUTION CHART	0.075	0.075	25	1.4	12.1		
	Percentage Finer that	n 0.075 mm Sieve					
				THE DISTRIBUTION OF	ADT		
90 90 80 90 70 90 80 90 80 90 80 90 90 90			FARICLES				
Grading curves and a second se	3 90						
Grading cur Grading cur Grading cur Cur Cur Cur Cur Cur Cur Cur C	말 70			- + + + + + + + + +		+++++	
Lower limit							
	et 40						
	20					++++	
	<u>م</u> 10					++++	
				4 1 1 1 1			
0.01 0.10 1.00 10.00 100.00	0.01	0.1	10	1.00	10.00	100.00	

Project:	FEASIBILITY STUDY	ON INTER CONNECTION	TRANSMISSION LINES UC	GANDA- KENYA AND UC	GANDA -RWANDA	
ocation/Source:						
oil Description:			Client :	NELSAP		
	-		1	1		
ample Reference:	M TP7		Sampling Date:			
echnician:			Testing Date:			
	Dry weight, M3:	600	1			
B.S. sieve (mm)	Aperture size (mm)	Partial weight retained (g)	Percentage retained	Percentage Passing (%)	Specified (%ge pa	assing)
			(%)		Lower limit	Upper limit
75.00	75.00	0	0.0	100		
50.00	50.00	0	0.0	100		
37.50	37.50	0	0.0	100		
20.00	20.00	0	0.0	100		
10	10	0	0.0	100		
5.00	5.00	7.2	1.2	99		
2.00	2.00	14	2.3	96		
1.18	1.18	5	0.8	96		
0.60	0.60	13	2.2	93.5		
0.425	0.425	4	0.7	92.8		
0.300	0.300	10	1.7	91.1		
0.212	0.212	20	3.3	87.8		
0.150	0.150	50	8.3	79.5		
0.075	0.075	70	11.7	67.8		
Percentage Finer that	n 0.075 mm Sieve					
100		PARTICLES	IZE DISTRIBUTION CHA		· • · · · • · · · ·	
90						
Percentage Passing (%)		*				
.ii						ading curve ver limit
4 50						per limit
80 40 10 30						
20						
10 -					$\left + + + + + + + + + + + + + + + + + + +$	
0						
0.01	0.10	1	.00	10.00	100.00	

Test Location

Kikubamutwe (Bujagali- Tororo)

Test No	B -TP1						
Zero Reading	20						
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for Zero Reading (mm)	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)
0	20	0		0	0		
5	53	33	33	5	7	38.3	41.1
5	65	45	12	10	2	139.7	119.7
10	72	52	7	20	1	676.5	440.3
10	97	77	25	30	3	132.6	114.7
10	102	82	5	40	1	1040.7	628.3
15	111	91	9	55	1	824.1	518.2
15	120	100	9	70	1	824.1	518.2
15	125	105	5	85	0	1748.7	964.5
20	135	115	10	105	1	1040.7	628.3
20	160	140	25	125	1	322.1	238.5
15	172	152	12	140	1	570.2	382.3
15	180	160	8	155	1	958.2	586.9
15	185	165	5	170	0	1748.7	964.5
15	193	173	8	185	1	958.2	586.9
20	205	185	12	205	1	824.1	518.2
20	210	190	5	225	0	2527.2	1307.3
20	225	205	15	245	1	619.3	409.3
20	235	215	10	265	1	1040.7	628.3
20	245	225	10	285	1	1040.7	628.3
20	252	232	7	305	0	1642.8	916.1

Buwenda (Bujagali- Tororo) Test Location

BTP-2

Test No

Zero Reading	50						
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for Zero Reading	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)
0	50	0		0	0		
1	118	68	68	1	68	1.9	3.5
1	170	120	52	2	52	2.7	4.6
1	230	180	60	3	60	2.3	4.0
1	289	239	59	4	59	2.3	4.1
1	356	306	67	5	67	2.0	3.5
1	397	347	41	6	41	3.7	6.0
1	440	390	43	7	43	3.5	5.7
1	498	448	58	8	58	2.4	4.1
1	553	503	55	9	55	2.5	4.4
1	607	557	54	10	54	2.6	4.5
1	660	610	53	11	53	2.7	4.5
1	718	668	58	12	58	2.4	4.1
1	763	713	45	13	45	3.3	5.4
2	845	795	82	15	41	3.7	6.0
2	900	850	55	17	28	6.2	9.1
2	950	900	50	19	25	7.0	10.1
2	1000	950	50	21	25	7.0	10.1
2	1050	1000	50	23	25	7.0	10.1
2	1103	1053	53	25	27	6.5	9.5
2	1150	1100	47	27	24	7.5	10.7

Test Location Wakitaka (Bujagali- Tororo)

Test No B TP-3

Zero Reading	55						
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for Zero Reading	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)
0	55	0		0	0		
2	93	38	38	2	19	9.9	13.4
2	125	70	32	4	16	12.3	16.1
4	193	138	68	8	17	11.4	15.1
4	245	190	52	12	13	16.1	20.1
4	293	238	48	16	12	17.8	21.8
4	342	287	49	20	12	17.3	21.4
4	399	344	57	24	14	14.3	18.2
4	450	395	51	28	13	16.5	20.5
4	497	442	47	32	12	18.3	22.3
4	552	497	55	36	14	15.0	18.9
4	607	552	55	40	14	15.0	18.9
4	651	596	44	44	11	19.9	23.9
4	692	637	41	48	10	21.8	25.8
4	738	683	46	52	12	18.8	22.8
4	780	725	42	56	11	21.1	25.2
4	827	772	47	60	12	18.3	22.3
4	868	813	41	64	10	21.8	25.8
4	907	852	39	68	10	23.2	27.2
4	947	892	40	72	10	22.5	26.5
4	994	939	47	76	11.75	18.3	22.3
4	1047	992	53	80	13.25	15.7	19.7
4	1088	1033	41	84	10.25	21.8	25.8

Test Location

Gomoja (Bujagali- Tororo)

Test No	B-TP 4						
Zero Reading	50						
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for Zero Reading	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)
0	50	0		0	0		
2	97	47	47	2	24	7.5	10.7
2	135	85	38	4	19	9.9	13.4
4	207	157	72	8	18	10.6	14.2
4	300	250	93	12	23	7.6	10.9
4	367	317	67	16	17	11.6	15.4
4	443	393	76	20	19	9.9	13.4
4	512	462	69	24	17	11.2	14.9
4	572	522	60	28	15	13.4	17.3
4	653	603	81	32	20	9.1	12.6
4	780	730	127	36	32	5.1	7.8
4	845	795	65	40	16	12.1	15.9
4	890	840	45	44	11	19.3	23.4
4	915	865	25	48	6	41.0	43.5
4	965	915	50	52	13	16.9	20.9
4	1000	950	35	56	9	26.7	30.5
4	1035	985	35	60	9	26.7	30.5
4	1070	1020	35	64	9	26.7	30.5
4	1107	1057	37	68	9	24.9	28.8
2	1132	1082	25	70	13	16.9	20.9

B TP-6

Test Location

Buwaiswa (Bujagali- Tororo)

Test No

Zero Reading	20						
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for	Penetration Depth per set of	Cummulative Blows	Rate of Penetration	CBR Value (Kleyn and Van	CBR Value (TRL)
0	20	0		0	0		
10	65	45	45	10	5	62.5	61.6
10	88	68	23	20	2	147.6	125.2
10	109	89	21	30	2	165.8	137.9
10	125	105	16	40	2	234.8	183.8
10	139	119	14	50	1	278.6	211.6
10	150	130	11	60	1	379.3	273.1
10	168	148	18	70	2	202.0	162.2
10	203	183	35	80	4	86.2	80.3
10	216	196	13	90	1	306.3	228.9
10	227	207	11	100	1	379.3	273.1
10	236	216	9	110	1	490.4	337.6
10	250	230	14	120	1	278.6	211.6
10	260	240	10	130	1	428.5	302.0
10	272	252	12	140	1	339.4	249.1
10	285	265	13	150	1	306.3	228.9

Test Location Bugodandala (Bujagali- Tororo)

B -TP 8

Test	No
------	----

Zero Reading	98						
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for Zero Reading	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)
0	98	0		0	0		
2	245	147	147	2	74	1.8	3.2
2	328	230	83	4	42	3.6	5.9
2	395	297	67	6	34	4.8	7.4
2	447	349	52	8	26	6.6	9.6
2	488	390	41	10	21	9.0	12.4
1	505	407	17	11	17	11.4	15.1
4	563	465	58	15	15	14.0	17.9
4	612	514	49	19	12	17.3	21.4
4	665	567	53	23	13	15.7	19.7
4	711	613	46	27	12	18.8	22.8
4	750	652	39	31	10	23.2	27.2
4	792	694	42	35	11	21.1	25.2
4	840	742	48	39	12	17.8	21.8
4	890	792	50	43	13	16.9	20.9
4	931	833	41	47	10	21.8	25.8
4	970	872	39	51	10	23.2	27.2
4	1000	902	30	55	8	32.5	35.9
2	1020	922	20	57	10	22.5	26.5
2	1040	942	20	59	10	22.5	26.5
2	1060	962	20	61	10	22.5	26.5

Test Location Magoola (Bujagali- Tororo)

Test No B- TP 9

Zero Reading	30						
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for Zero Reading	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)
0	30	0		0	0		
10	110	80	80	10	8	29.9	33.5
10	174	144	64	20	6	39.8	42.4
10	223	193	49	30	5	56.0	56.3
10	272	242	49	40	5	56.0	56.3
10	337	307	65	50	7	39.0	41.8
10	411	381	74	60	7	33.1	36.4
10	480	450	69	70	7	36.2	39.2
10	560	530	80	80	8	29.9	33.5
10	624	594	64	90	6	39.8	42.4
10	670	640	46	100	5	60.8	60.2
10	720	690	50	110	5	54.6	55.1
10	775	745	55	120	6	48.3	49.8
10	820	790	45	130	5	62.5	61.6
10	860	830	40	140	4	72.7	69.8
10	910	880	50	150	5	54.6	55.1
10	988	958	78	160	8	30.9	34.4
10	1050	1020	62	170	6	41.5	43.9

Test Location Busolo (Bujagali- Tororo)

Test No B- TP 10

Zero Reading	20						
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for Zero Reading	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)
0	20	0		0	0		
5	75	55	55	5	11	19.9	23.9
5	96	76	21	10	4	68.3	66.3
5	119	99	23	15	5	60.8	60.2
5	138	118	19	20	4	77.6	73.6
5	160	140	22	25	4	64.3	63.1
5	180	160	20	30	4	72.7	69.8
5	197	177	17	35	3	89.5	82.8
5	208	188	11	40	2	156.2	131.2
5	220	200	12	45	2	139.7	119.7
5	232	212	12	50	2	139.7	119.7
5	245	225	13	55	3	126.1	110.0
5	262	242	17	60	3	89.5	82.8
5	278	258	16	65	3	96.7	88.3
5	293	273	15	70	3	105.0	94.6
5	309	289	16	75	3	96.7	88.3
5	323	303	14	80	3	114.7	101.7
5	324	304	1	85	0	3362.6	1655.1

Test Location Tororo-Angoloto (Bujagali- Tororo)

Test No B-TP 13

Zero Reading	80						
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for Zero Reading	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)
0	80	0		0	0		
2	245	165	165	2	82.5	1.5	2.8
2	365	285	120	4	60	2.3	4.0
2	450	370	85	6	42.5	3.5	5.7
2	475	395	25	8	13	16.9	20.9
2	488	408	13	10	7	39.0	41.8
2	495	415	7	12	4	86.2	80.3
5	510	430	15	17	3	105.0	94.6
5	535	455	25	22	5	54.6	55.1
5	565	485	30	27	6	43.2	45.4
5	600	520	35	32	7	35.5	38.6
5	635	555	35	37	7	35.5	38.6
5	663	583	28	42	6	47.2	48.9
5	698	618	35	47	7	35.5	38.6
5	730	650	32	52	6	39.8	42.4
5	760	680	30	57	6	43.2	45.4
5	790	710	30	62	6	43.2	45.4
5	821	741	31	67	6	41.5	43.9
5	863	783	42	72	8	28.1	31.8
5	900	820	37	77	7	33.1	36.4
5	930	850	30	82	6	43.2	45.4

Test Location Mbarara stock farm (Mbarara-Mirama)

Test No

M- TP 1

Zero Reading	30						
v	Penetration/Depth (mm)	Penetration Corrected for Zero Reading	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)
0	30	0		0	0		
10	90	60	60	10	6	43.2	45.4
10	137	107	47	20	4.7	59.1	58.8
10	184	154	47	30	5	59.1	58.8
10	239	209	55	40	6	48.3	49.8
10	291	261	52	50	5	51.9	52.9
10	343	313	52	60	5	51.9	52.9
10	393	363	50	70	5	54.6	55.1
10	436	406	43	80	4	66.2	64.6
10	482	452	46	90	5	60.8	60.2
10	533	503	51	100	5	53.2	54.0
10	588	558	55	110	6	48.3	49.8
10	640	610	52	120	5	51.9	52.9
10	689	659	49	130	5	56.0	56.3
10	743	713	54	140	5	49.5	50.8
10	797	767	54	150	5	49.5	50.8
10	848	818	51	160	5	53.2	54.0
10	897	867	49	170	5	56.0	56.3
10	945	915	48	180	5	57.5	57.5
10	992	962	47	190	5	59.1	58.8
10	1040	1010	48	200	5	57.5	57.5
5	1070	1040	30	205	6	43.2	45.4

Test Location Katukuru (Mbarara-Mirama)

Test No

M -TP 2

Zero Reading	138						
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for Zero Reading	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)
0	138	0		0	0		
4	314	176	176	4	44	3.4	5.5
4	449	311	135	8	34	4.7	7.3
4	555	417	106	12	27	6.5	9.5
4	626	488	71	16	18	10.8	14.4
4	661	523	35	20	9	26.7	30.5
4	711	573	50	24	13	16.9	20.9
4	740	602	29	28	7	33.9	37.2
4	771	633	31	32	8	31.2	34.7
4	802	664	31	36	8	31.2	34.7
4	829	691	27	40	7	37.2	40.1
4	858	720	29	44	7	33.9	37.2
4	891	753	33	48	8	28.8	32.5
4	921	783	30	52	8	32.5	35.9
4	955	817	34	56	9	27.7	31.4
4	969	831	14	60	4	86.2	80.3
2	984	846	15	62	8	32.5	35.9

Test Location Mweya (Mbarara-Mirama)

Test No M- TP 3

Zero Reading	55						
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for Zero Reading	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)
0	55	0		0	0		
5	65	10	10	5	2	176.5	145.1
5	67	12	2	10	0.4	1384.7	795.5
5	68	13	1	15	0	3362.6	1655.1
10	69	14	1	25	0	8165.8	3443.5
10	70	15	1	35	0	8165.8	3443.5

Test Location Ngugo (Mbarara-Mirama)

rigugo (inounau r

Test No M-TP 4

Zero Reading	51								
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for Zero Reading	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)		
0	51	0		0	0				
2	90	39	39	2	20	9.6	13.1		
2	123	72	33	4	17	11.8	15.6		
2	175	124	52	6	26	6.6	9.6		
2	270	219	95	8	48	3.1	5.1		
2	314	263	44	10	22	8.2	11.5		
2	354	303	40	12	20	9.3	12.7		
2	391	340	37	14	18.5	10.2	13.8		
2	425	374	34	16	17	11.4	15.1		
2	454	403	29	18	14.5	14.0	17.9		
2	483	432	29	20	14.5	14.0	17.9		
2	511	460	28	22	14	14.6	18.6		
2	539	488	28	24	14	14.6	18.6		
2	570	519	31	26	15.5	12.8	16.7		
2	595	544	25	28	12.5	16.9	20.9		
2	611	560	16	30	8	29.9	33.5		
2	629	578	18	32	9	25.7	29.6		
2	648	597	19	34	10	24.0	28.0		
2	669	618	21	36	11	21.1	25.2		
2	690	639	21	38	11	21.1	25.2		
2	709	658	19	40	10	24.0	28.0		
4	743	692	34	44	9	27.7	31.4		
4	776	725	33	48	8	28.8	32.5		
4	807	756	31	52	8	31.2	34.7		
4	841	790	34	56	9	27.7	31.4		
4	871	820	30	60	8	32.5	35.9		
4	902	851	31	64	8	31.2	34.7		

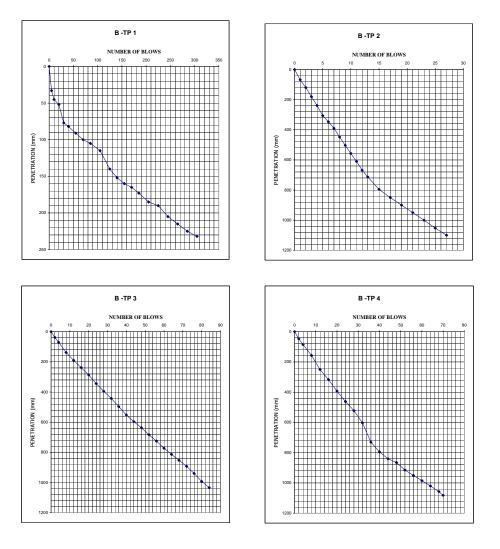
Test Location Nyabugando (Mbarara-Mirama)

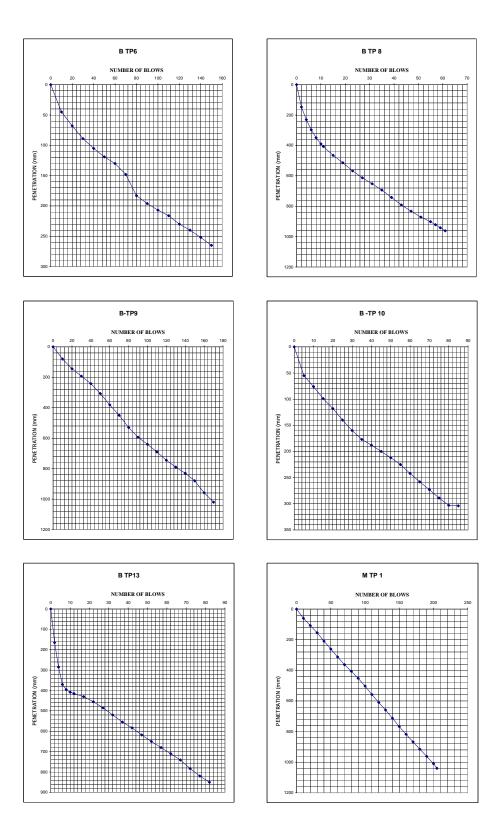
Depth of Test

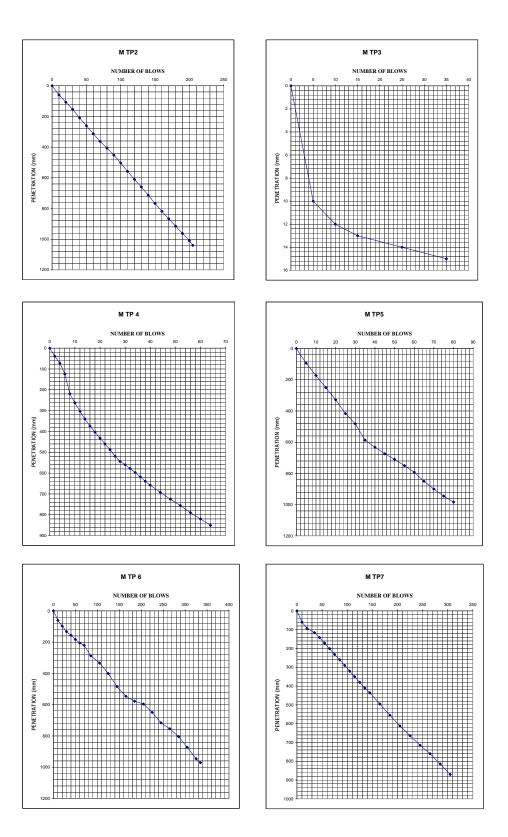
Test No	M- TP 5						
Zero Reading	50						
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for Zero Reading	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)
0	50	0		0	0		
5	144	94	94	5	18.8	10.0	13.6
5	223	173	79	10	15.8	12.5	16.3
5	300	250	77	15	15.4	12.9	16.8
5	378	328	78	20	15.6	12.7	16.6
5	467	417	89	25	17.8	10.8	14.4
5	532	482	65	30	13	16.1	20.1
5	637	587	105	35	21	8.7	12.1
5	682	632	45	40	9	25.7	29.6
5	724	674	42	45	8	28.1	31.8
5	760	710	36	50	7	34.2	37.5
5	800	750	40	55	8	29.9	33.5
5	842	792	42	60	8	28.1	31.8
5	900	850	58	65	12	18.6	22.6
5	950	900	50	70	10	22.5	26.5
5	995	945	45	75	9	25.7	29.6
5	1033	983	38	80	8	32.0	35.4

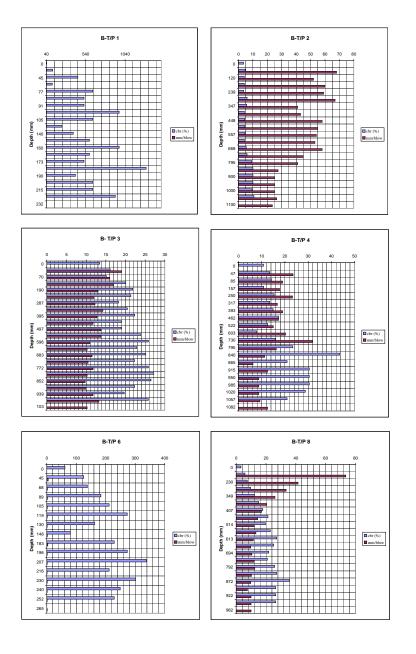
Test Location Ki

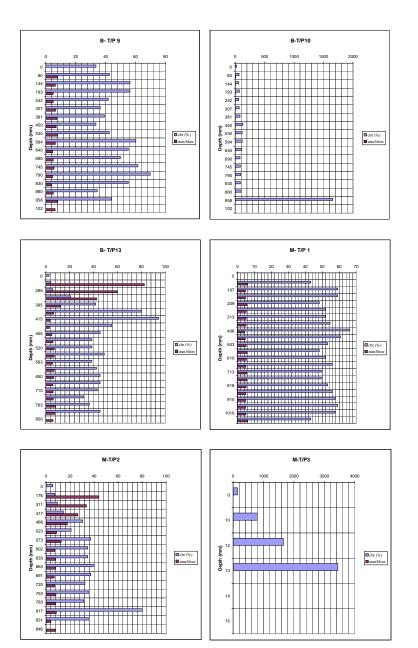
Kitye (Mbarara-Mirama)

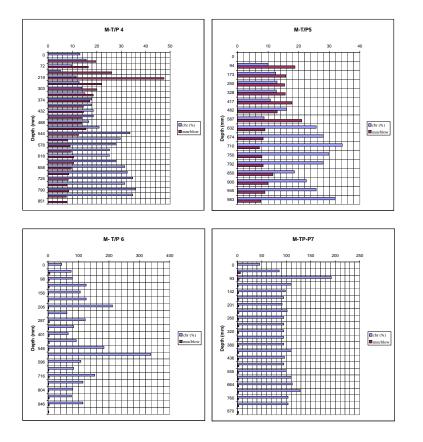

Test No M- TP 6


Zero Reading	44						
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for Zero Reading	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)
0	44	0		0	0		
10	105	61	61	10	6.1	42.3	44.7
10	142	98	37	20	3.7	80.3	75.8
10	177	133	35	30	3.5	86.2	80.3
10	200	156	23	40	2.3	147.6	125.2
10	227	183	27	50	2.7	120.2	105.7
10	250	206	23	60	2.3	147.6	125.2
10	264	220	14	70	1.4	278.6	211.6
15	331	287	67	85	4.5	63.1	62.1
20	378	334	47	105	2.35	143.6	122.4
20	445	401	67	125	3	91.2	84.1
20	529	485	84	145	4	68.3	66.3
20	590	546	61	165	3	102.8	92.9
20	622	578	32	185	2	234.8	183.8
20	640	596	18	205	1	490.4	337.6
20	693	649	53	225	3	123.1	107.8
20	760	716	67	245	3	91.2	84.1
20	798	754	38	265	2	188.4	153.2
20	848	804	50	285	3	132.6	114.7
20	917	873	69	305	3	87.8	81.6
20	990	946	73	325	4	81.7	76.9
10	1015	971	25	335	3	132.6	114.7


Test Location Rwembogo (Mbarara-Mirama)


Test No M- TP 7


Zero Reading	30						
Number of Blows	Penetration/Depth (mm)	Penetration Corrected for Zero Reading	Penetration Depth per set of blows	Cummulative Blows	Rate of Penetration (mm/Blow)	CBR Value (Kleyn and Van Heereden)	CBR Value (TRL)
0	30	0		0	0		
10	90	60	60	10	6	43.2	45.4
10	123	93	33	20	3.3	93.0	85.5
15	146	116	23	35	1.5	248.0	192.2
10	172	142	26	45	2.6	126.1	110.0
10	201	171	29	55	2.9	109.7	98.0
10	231	201	30	65	3	105.0	94.6
10	262	232	31	75	3	100.7	91.3
10	290	260	28	85	3	114.7	101.7
10	320	290	30	95	3	105.0	94.6
10	350	320	30	105	3	105.0	94.6
10	380	350	30	115	3	105.0	94.6
10	410	380	30	125	3	105.0	94.6
10	440	410	30	135	3	105.0	94.6
10	466	436	26	145	3	126.1	110.0
20	525	495	59	165	3	107.3	96.2
20	585	555	60	185	3	105.0	94.6
20	642	612	57	205	3	112.1	99.8
20	694	664	52	225	3	126.1	110.0
20	745	715	51	245	3	129.3	112.3
20	790	760	45	265	2	151.8	128.2
20	845	815	55	285	3	117.4	103.7
20	900	870	55	305	3	117.4	103.7



EXCELLENCE THROUGH PRECISION AND INTEGRITY DETERMINATION OF IN SITU DENSITY Feasibility study on inteconnection Client: transmission lines Uganda-Kenya & Project: M/s power networks (U) Uganda-Rwanda Location: Bulk Density of Sand 1.36 g/cm³ BS 1377- PART 9:1990 Material Discription : Method Material Source: Date of Test Test Pit Number B- 7 B -10 B -1 B - 2 B - 3 B -4 В-5 B- 6 B- 8 B- 9 Depth of hole (mm) 150 150 150 150 90 110 85 3750 4580 3870 3240 2270 4600 192 134 3560 Mass of wet soil 198 (gms) Mass of sand before pouring in [(gms) 16800 11430 11870 12370 13230 Mass of sand after pouring in hc (gms) 11500 12820 13380 Mass of sand in hole and cone (gms) 5300 5370 4930 3980 3420 4430 3570 1402 Mass of sand in cone (gms) Mass of sand in hole (gms) 3898 3968 3528 2578 160 2018 160 160 2168 2168 Volume of hole (cm³) 2866 2918 2594 1896 118 1484 118 118 1594 1594 Bulk density of soil 1605 1285 1766 2042 1632 2184 1139 1683 2233 1424 (Kg/m³) **Moisture Content Determination** Container Number PD 15 7B 70 4T ΤI 5 WE 109.0 10 152.2 102.8 181.5 149.3 116 148.8 156.5 195.8 123.4 Mass of wet soil + container 71.7 (gms) Mass of dry soil + container 138.6 127.3 90.0 135.2 163.0 138.4 178.9 107.6 66.4 111 (gms) Mass of Container 44.7 34.9 24.2 31.7 31.3 31.7 40.0 18.3 15.0 28 Moisture content 17.7 (%) 10.9 26.9 19.5 20.6 14.0 10.2 12.2 10.3 6.9 Dry density of soil from hole 1448 1012 1478 1693 1431 1981 1015 1430 2024 1332 (Kg/m³)

			DET	ERMINATION (OF IN SITU DENS	ITY				
Project:				Client:						
Location:				Bulk Density	of Sand	1.36	g/cm ³			
Material Discription :				Method						
Material Source:				Date of Test						
Test Pit Number		B-12	B- 13	M- 1	M-2	M-3	M-4	M-5	M-6	M-7
Depth of hole	(mm)	100	150	80				80	90	80
Mass of wet soil	(gms)	2030	5010	2730	214		180	2235	2400	2640
Mass of sand before pouring in hole	(gms)					16800				
Mass of sand after pouring in hole	(gms)	12670	11640	13535		9550		13280	13120	13525
Mass of sand in hole and cone	(gms)	4130	5160	3265		7250		3520	3680	3275
Mass of sand in cone	(gms)					1402				
Mass of sand in hole	(gms)	2728	3758	1863	160	5848	160	2118	2278	1873
Volume of hole	(cm ³)	2006	2763	1370	118	4300	118	1557	1675	1377
Bulk density of soil	(Kg/m ³)	1012	1813	1993	1819	#VALEUR!	1530	1435	1433	1917
			N	Ioisture Conte	nt Determination	1				
Container Number		42	RI	AQ	1B	19	7	HP	BA11	AY
Mass of wet soil + container	(gms)	137.1	151.8	126.5	147.0	147.5	148.1	147.4	182.8	161.3
Mass of dry soil + container	(gms)	126.9	139.7	116.1	125.4	133.3	116.0	129.2	167.7	148.9
Mass of Container		16.6	34.1	17.5	15.0	47.5	46.5	38.1	48.6	29.2
Moisture content	(%)	9.2	11.5	10.5	19.6	16.6	46.2	20.0	12.7	10.4
Dry density of soil from hole	(Kg/m ³)	926	1627	1803	1521	#VALEUR!	1047	1196	1272	1737

EXCELLENCE THROUGH PRECISION AND INTEGRITY

S.P. Kisitu Laboratory Engineer

Project:	Feas	ibility	study on inte	econnec	tion Tr	ansmissi	on Line	s Ugan	da-Ke	nya &	Uganda-	Rwanda		
Location:			B tp 1			Sam	ole Sou	rce:						
Soil Description							-							
Sampling Date:						Test Met	hod			BS1377 part 2 1990.				
Festing Date:						Technici	an]	Marriam.			
PLASTIC LIM	IT		Test no.	:	1	2			3		4	Averag	e	
Contauner no.				,	ľ	K)							
Mass of wet soil	l + con	ntainer	g	11	.5	17.0	00							
Aass of dry soil		ntainer	g	10	0.0	15.								
Aass of contain			g		.8	9.2								
Mass of moistur			g		50	1.5								
Mass of dry soil			g		20	6.3								
Moisture conten	ıt		%	24	.19	23.8	81					24.00		
LIQUID LIMI	Г				1	2			3		4	5		
nitial dial gaug	e read	ing	mm	0	0	0	0	0	0)				
Final dial gauge		ng	mm	15	15	19.5	19.4	21.3	21.5					
Cone Penetratio			mm	15	15	19.5	19.4	21.3	21.5					
	brage cone penetration mm		1	5	19.4	45	21	.4		_				
Container no.	ntainer no.		М		702		W							
			0	36.7		43.90		45						
Mass of dry soil		itainer	g	29.5		34.40		34	.90 40					
Mass of moistur			g	9.5 7.1	20	9.50 9.5	0	10.						
Mass of dry soil			g	20.		24.9		25.						
Moisture conten			g %		.00 5.0	38.		40						
			,							-				
		24												
		22					د ا		_					
	Î	20												
	ation (18												
	enetra									LIQU		38.8	%	
	Cone Penetration (mm)	16		-						LIMI			, 0	
		14 — 12 —								PLAS LIMI		24.0	%	
		10 30.0	32.0 34.				42.0	44.0		PLAS INDE	TICITY X	14.8	%	
Checked by:	S.P.K	30.0 = 1.3159 Xisitu	32.0 34. x - 31.797		0 38 sture Con		42.0	44.0				14.8		

		D 7704										
Location:		B TP2			Samj	ple Sou	rce:					
Soil Description	1											
Sampling Date:					Test Met	hod			BS13	77 part 2	1990.	
Testing Date:					Technici	an				Marriam.		
PLASTIC LIN	กา	Test no.	1		2		3	3		4	Averag	e
Contauner no.		Test no.	B		B						Interas	0
Mass of wet soi	l + container	g	15.		14.1							
Mass of dry soi		g	14.		13.2							
Mass of contain		g	9.:	50	9.5							
Mass of moistu	re	g	1.2	20	0.9	0						
Mass of dry soi	1	g	4.:	50	3.7	0						
Moisture conter	nt	%	26.	.67	24.3	32					25.50	
LIQUID LIMI	Т		1		2		3	2	I	4	5	
		mm	0	0	0	0	0	, 0		-	5	
	al dial gauge readingmml dial gauge readingmme Penetrationmm		13.2	13.2	19.2	19.5	22.5	22.5				
Cone Penetratio	ne Penetration mm		13.2	13.2	19.2	19.5	22.5	22.5				
	erage cone penetration mm		13		19.3		22					
Container no.			117		702		65					
Mass of wet soi	ontainer no. fass of wet soil + container g		40.9		26.90		40.	.70				
Mass of dry soi	l + container	g	32.9		21.10		31.	.50				
Mass of contain	er	g	14.7		9.50		14.	.80				
Mass of moistur	re	g	8.0	00	5.8	0	9.2	20				
Mass of dry soi	1	g	18.	20	11.0	50	16.	.70				
Moisture conter	nt	%	44	.0	50.	0	55	5.1				
	[
	24											
	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>											
	u 20			•				-				
				\wedge					LIQU		51.8	(
	J al and a second secon								LIMI	Т		
	14								PLAS LIMI		25.5	
	12	2.0 44.0 4	46.0 48.0 Mois		52.0 54. tent (%)	.0 56.0	58.0	60.0	PLAS INDE	STICITY EX	26.3	
	y = 0.8409x	- 23.429	Mois	sture Con	tent (%)							

PLASTIC LIMIT AND LIQUID LIMIT	(CONE PENETROMETER)

	B TP3			Samj	ple Sourc	e:					
				m			DG1277 () 1	000			
				Test Met Technici			BS1377 part 2 1990.				
				Technici	an		Marriam.				
I	Test no.	1		2		3	4	Average	e		
		K	D	BL	J						
container	g	16.	.20	16.0	00						
container	g	14.	.60	14.6	60						
	g	9.	10	9.8	0						
	g				-						
	g				-						
	%	29.	.09	29.	17			29.13			
		1		2		3	1	5			
eading	mm	-				J		5			
l dial gauge reading mm		-									
e Penetration mm		13.9	14	25.4	25.5						
erage cone penetration mm		13.	.95	25.4	45						
ntainer no.		10		00							
ntainer no. ass of wet soil + container g		42.9		43.10							
container	g	33.1		32.7	70						
	g	14.7		15.	50						
	g			10.4	40						
	g										
	%	53	.3	60.	5						
							_				
26											
u 22											
DC unctrat							LIQUID	57.0	0/		
а 18 ш							LIMIT		%		
Ŭ 16							PLASTIC LIMIT	29.1	%		
12 45.0 47.0) 49.0 51.0				3.0 65.0 6	7.0 69.0	PLASTICITY INDEX	27.9	%		
	eading ading atration container container 26 24 22 20 20 18 18 16 14 12 45.0 47.0	g g g g %	g 9. g 1.0 g 5.1 % 29.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	g 9.10 9.80 g 1.60 1.40 g 5.50 4.80 % 29.09 29.17 ading mm 0 0 0 ading mm 13.9 14 25.4 25.5 mm 13.9 14 25.4 25.5 tration mm 13.95 25.45 10 OO O Image: Container g 33.1 32.70 Image: Container g 18.40 17.20 Image: Container G Image: Container Image: Container	g 9.10 9.80		

Project:	Feasibility stu	dy on inte	connec	tion Tr	ansmissi	on Lines	Uganda-l	Kenya & Uganda-	Rwanda			
Location:		B TP4			Sam	ple Sourc	e:					
Soil Description	n											
Sampling Date:	:				Test Met	hod		BS1377 part 2 1990.				
Testing Date:					Technici	an		Marriam.				
PLASTIC LIN	ЛТ	Test no.	1	1	2		3	4	Averag	P		
Contauner no.		Test no.	Ŋ		50		5	T	Tivelug	U		
Mass of wet so	il + container	g	9.9		10.3							
Mass of dry soi		g	8.		8.8							
Mass of contair		g	3.8		3.8							
Mass of moistu		5 5	1.4		1.5							
Mass of dry soi		ь g	4.		5.0							
Moisture conte		5 %	29.		30.0				29.89			
			/									
LIQUID LIMI	T		1	l	2		3	4	5			
	ial dial gauge reading mm al dial gauge reading mm		0	0	0	0						
Final dial gauge	al dial gauge reading mm		15.0	14.9	23.8	23.9						
Cone Penetratio	ne Penetration mm		15.0	14.9	23.8	23.9						
Average cone p	verage cone penetration mm		14.	.95	23.	35	· ·					
Container no.			642		6300							
Mass of wet so	il + container	g	37		29.	60						
Mass of dry soi	l + container	g	26.6		21.79							
Mass of contain	ner	g	9.6		9.40							
Mass of moistu		đđ	10.	40	7.8	1						
Mass of dry soi		g	17.	00	12.3	39						
Moisture conte	nt	%	61	.2	63.	1						
Mass of contair Mass of moistu Mass of dry soi	ner re 1	an D	9.6 10. 17.	.00	9.4 7.8 12.3	0 1 39		LIQUID LIMIT PLASTIC LIMIT	62.3			
	14 + 60.0 y = 4.6266x - 268	62.0 8.09	64. Moi s	0 sture Con	66.0 tent (%)	68.0	70.0	PLASTICITY INDEX	32.4			

Project:					1		- 8	Kenya & Uganda- I				
Location:		B TP6			Sam	ole Source	:					
Soil Description												
Sampling Date:					Test Met			BS1377 part 2 1990.				
Festing Date:					Technici	an		Marriam.				
PLASTIC LIM	IT	Test no.	1	1	2		3	4	Average	e		
Contauner no.			()	PC)						
Mass of wet soil	+ container	g	17.	.60	15.1	10						
Mass of dry soil	+ container	g	16	.20	14.2	20						
Mass of containe	er	g	9.	20	9.4	0						
Mass of moisture	e	g		40	0.9	0						
Mass of dry soil		g		00	4.8	-						
Moisture content	t	%	20.00		18.75				19.38			
LIQUID LIMIT	QUID LIMIT tial dial gauge reading mm nal dial gauge reading mm		1	1	2		3	4	5			
		mm	0	0	0	0	5					
	al dial gauge reading mn		16.7	16.7	26.3	26.2						
Cone Penetratior	e Penetration mm		16.7	16.7	26.3	26.2						
Average cone pe	rerage cone penetration mm		16	5.7	26.2	25			1			
Container no.	ontainer no.		BU		Y							
Mass of wet soil	ass of wet soil + container g		36.3		37.9							
	lass of dry soil + container g		29.6		30.30							
Mass of containe		g	9.8		9.5							
Mass of moisture	9	g		70	7.6	-						
Mass of dry soil		g		.80	20.8							
Moisture content	t	%	33	5.8	36.	5						
								-				
	28											
	26				- / -							
	j 24											
	u u 101 22				/							
	24 22 20 20 18							LIQUID	34.8	%		
	one Pe			$/^{-}$				LIMIT		%		
	ວັ 18 16		-	/				PLASTIC LIMIT	19.4	%		
	14 30.0	32.0	34. Moi:	0 sture Con	36.0	38.0	40.0	PLASTICITY INDEX	15.4	%		
	y = 3.5369x - 102	2.98										
Checked by:	S.P.Kisitu											

PLASTIC LIMIT AND LIQUID LIMIT	(CONE PENETROMETER)
	(••••••••••••••••••••••••••••••••••••

Location:			B TP8											
Soil Description						Samj	ple Sou	rce:						
I I I I	l													
Sampling Date:						Test Met	hod			BS1377 part 2 1990.				
Testing Date:						Technician				Marriam.				
PLASTIC LIM	IT		Test no.			2		3	3	4	Averag	e		
Contauner no. Mass of wet soil		ntoinor			D .50	9.7	<u>'0</u>							
Mass of dry soil			g g	9.:		8.8								
Mass of contain			g	4.0		3.8								
Mass of moistur			b g	1.0		0.9								
Mass of dry soil			g	5.:	50	5.0	0							
Moisture conten	t		%	18	.18	18.0	00				18.09			
LIQUID LIMI					[2		() 		4	5			
	dial gauge readingmm0ial gauge readingmm16.3			0	0	0	0	0						
	enetration mm 16.5			16.5	21.8	21.8								
	netrationmm16.516.cone penetrationmm16.5		16.5	21.8 21.	21.8									
Average cone per Container no.	Juetta		n mm 16.5 Z2		6300	U								
	her no.Z2f wet soil + containerg53			42.	50									
Mass of dry soil			a a	41.0		33.9	90							
Mass of contain			g	5.7		9.4	0							
Mass of moistur	e		g	12.	.00	8.6	0							
Mass of dry soil			g	35.	.30	24.5	50							
Moisture conten	t		%	34	.0	35.	1							
		28												
		26 —							_					
) 	24							_					
	u (m	22							_					
	Cone Penetration (mm)	20					++		_	LIQUID	34.7			
	ne Per	18							_	LIMIT		%		
	ပိ	16							_	PLASTIC	18.1	%		
		14							-	LIMIT		~		
		12 20.0	22.0 24.0 2	26.0 28.		32.0 34	.0 36.0	38.0	40.0	PLASTICITY INDEX	16.6	%		
				Moi	sture Con	tent (%)	v = 4.	7847x - 1	46 15		11			

Project: Fea	sibility stu	ıdy on inte	connec	tion Tr	ansmissio	on Line	s Uganda-	Kenya & Uganda-	Rwanda	
Location:		B TP9			Sam	ole Sour	ce:			
Soil Description										
Sampling Date:					Test Met	hod		BS1377 part 2	990.	
Testing Date:					Technici	an		Marriam.		
PLASTIC LIMIT		Test no.	1		2		3	4	Average	
Contauner no.		Test IIO.	SN		18		5		Average	C
Mass of wet soil $+ c_{i}$	ontainer	g	9.		13.2					
Mass of dry soil $+ co$		g	8.2		11.4					
Mass of container		g	3.2		5.0					
Mass of moisture		g	1.		1.8					
Mass of dry soil		g	4.:	50	6.4	0				
Moisture content		%	28.	.89	28.	13			28.51	
LIQUID LIMIT			1		2		3	4	5	
Initial dial gauge rea	ding	mm	0	0	0	0	5		5	
Final dial gauge read	-	mm	16.5	16.4	23.7	23.6				
Cone Penetration	8	mm	16.5	16.4	23.7	23.6				
Average cone penetr	ation	mm	16.		23.0					
Container no.			600		TU					
Mass of wet soil + c	ontainer	g	33.6		36.	50				
Mass of dry soil + co	ontainer	g	25.9		27.20					
Mass of container		g	9.6		9.4	0				
Mass of moisture		g	7.2	70	9.3	0				
Mass of dry soil		g	16.	.30	17.8	30				
Moisture content		%	47	.2	52.	2				
	24									
	24									
	22									
	20									
	22 20 18							LIQUID	49.7	9
	18							LIMIT		
	16							PLASTIC LIMIT	28.5	ģ
	14							PLASTICITY		
			51.0 53.0 Moi s	0 55.0 sture Con	57.0 59. tent (%)	0 61.0	63.0 65.0	INDEX	21.2	ģ
y =	1.4377x - 51.	.467			. ,					
Charles 11 C.P.	V:-:·									
2	<i>Kisitu</i> ratory Eng	ineer								
Labo	oratory Eng	smeet								

Project:	Feasibility st	udy on inte	connec	tion Tra	ansmissi	on Lines	Uganda	a-Kenya & Ugand	a- Rwanda	
Location:		B TP11			Sam	ple Sourc	· • ·			
Soil Description					Sam	pie Sourc	с.			
Sampling Date:					Test Me	thod		BS1377 part	2 1990.	
Testing Date:					Technici	ian		Marria	n.	
PLASTIC LIM	IT	Test no.	1	l	2		3	4	Averag	e
Contauner no.										
Mass of wet soil		g								
Mass of dry soil		g								
Mass of containe		g								
Mass of moistur	9	g								
Mass of dry soil		g								
Moisture conten	t	%							#DIV/0)!
LIQUID LIMI	י		1	1	2		3	4	5	
-	itial dial gauge reading		0	0	0	-	5		5	
Final dial gauge	-	mm mm	15.5	15.4	25.7	25.5				
Cone Penetration	-	mm	15.5	15.4	25.7	25.5				
Average cone pe		mm	15.		4 25.7 25.5 25.6			I		
Container no.			L		25.6 Y					
Mass of wet soil	+ container	g	35.4		Y 37.80					
Mass of dry soil	+ container	g	29.6		30.	30				
Mass of containe	er	g	9.8		9.5	50				
Mass of moisture	e	g	5.	80	7.5	50				
Mass of dry soil		đ	19.	.80	20.	80				
Moisture conten	t	%	29	0.3	36	.1				
	28 26 ÎI 24									
	Cone Penetration (mm) 2 2							LIQUID LIMIT	32.3	%
	ບິ້ 18 16			• 				PLASTIC LIMIT	#DIV/0!	%
	14	27.0 29.	0 31.	0 33.	0 35.0	37.0	39.0	PLASTICIT INDEX	Y Non plastic	9

Project: F	easibility stu	ıdy on inte	econnec	tion Tr	ansmissi	on Lines	Uganda-	Kenya & Uganda	- Rwanda	
Location:		B TP12			Sam	ple Source	<u>.</u> .			
Soil Description					Jain	pie Source				
L. L										
Sampling Date:					Test Me	thod		BS1377 part 2	1990.	
Testing Date:					Technic	ian		Marriam		
					T				1	
PLASTIC LIMI	Γ	Test no.	1	l	2		3	4	Averag	e
Contauner no.										
Mass of wet soil +		g								
Mass of dry soil +		g								
Mass of container Mass of moisture		g								
Mass of moisture Mass of dry soil		g								
Moisture content		g %							#DIV/0	1
		70							"DIV/0	•
LIQUID LIMIT			1	l	2		3	4	5	
	tial dial gauge reading mm		0	0	0	0				
Final dial gauge re			15.0	15	25.0	25.1				
Cone Penetration			15.0	15	25	25.1				
Average cone pen	Penetration mm ge cone penetration mm		1	5	25.	05				
Container no.			SNO		TU					
Mass of wet soil +	- container	g	26		36.	70				
Mass of dry soil +		g	21.1		30.					
Mass of container		g	3.7		9.6					
Mass of moisture		g	4.9		6.7					
Mass of dry soil		g	17.		20.					
Moisture content		%	28	3.2	32	.8				
	26 24 (IIII) 22									
	Cone Penetration (mm)			/				LIQUID LIMIT	30.5	%
	16							PLASTIC LIMIT	#DIV/0!	%
	14 + 25.0	27.0 4x - 45.445	29.0 Mois	0 sture Con	31.0	33.0	35.0	PLASTICITY INDEX	Non plastic	%

B TP13 Test no. er g er g g g g % mm mm mm mm er g	20 12 11 5 6. 18 0 14.5 14.5	1 04 .60 .50 40 10 10 .03 1 0 14.5 4.5 4.5	Sam Test Mei Technici 2 18 11.4 10.7 4.9 11.1 5.8 18.7 2 0 19.5 19.5 19.5 19.5	an 2 30 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rce:	3		77 part 2 1 Marriam. 4 4 4 4 4 4	1990. Average 18.50	e
er g g g g % % mm mm mm er g	20 12 11 5 6. 18 0 14.5 14.5 14.5 14.5	04 .60 .50 40 10 .03 1 1 0 14.5 14.5	Technici 2 18 11.4 10.7 4.9 1.1 5.8 18.7 2 0 19.5 19.5 19.5 19.5	an 2 30 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 27 26.9	3 3 0 27		4 4	Average 18.50	e
er g g g g % % mm mm mm er g	20 12 11 5 6. 18 0 14.5 14.5 14.5 14.5	04 .60 .50 40 10 .03 1 1 0 14.5 14.5	Technici 2 18 11.4 10.7 4.9 1.1 5.8 18.7 2 0 19.5 19.5 19.5 19.5	an 2 30 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 27 26.9	3 3 0 27		4 4	Average 18.50	e
er g g g g % % mm mm mm er g	20 12 11 5 6. 18 0 14.5 14.5 14.5 14.5	04 .60 .50 40 10 .03 1 1 0 14.5 14.5	2 18 11.4 10.7 4.9 1.1 5.8 18.7 2 0 19.5 19.5 19.5 19.5	2 30 70 0 0 0 97 0 19.2 19.2	3 0 27 26.9	3 0 27		4	18.50	e
er g g g g % % mm mm mm er g	20 12 11 5 6. 18 0 14.5 14.5 14.5 14.5	04 .60 .50 40 10 .03 1 1 0 14.5 14.5	18 11.1 10.7 4.9 1.1 5.8 18.7 2 0 19.5 19.5 19.5 19.5	2 30 70 0 0 0 97 97 0 19.2 19.2	3 0 27 26.9	3 0 27			18.50	e
er g g g g % % mm mm mm er g	20 12 11 5 6. 18 0 14.5 14.5 14.5 14.5	04 .60 .50 40 10 .03 1 1 0 14.5 14.5	18 11.1 10.7 4.9 1.1 5.8 18.7 2 0 19.5 19.5 19.5 19.5	2 30 70 0 0 0 97 97 0 19.2 19.2	3 0 27 26.9	3 0 27			18.50	
er g g g % % mm mm mm er g	12 11 5. 1. 6. 18 0 14.5 14.5 14.5 14.5	.60 .50 40 10 .03 1 1 0 14.5 14.5	11 10. 4.9 1.1 5.8 18.9 2 0 19.5 19.5 19.5	80 70 10 0 0 0 97 0 19.2 19.2	0 27 26.9	0 27		4		
er g g g % % mm mm mm er g	111 5 6. 18 0 14.5 14.5 14.5 14.5	.50 40 10 .03 1 1 0 14.5 14.5	10. 4.9 1.1 5.8 18. 2 0 19.5 19.5 19.5	70 0 0 0 97 0 19.2 19.2	0 27 26.9	0 27		4		
g g g % mm mm mm er g	5 1. 6. 18 0 14.5 14.5 14.5 14.5	40 10 .03 1 1 .03 1 .03 1 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03	4.9 1.1 5.8 18.9 2 0 19.5 19.5 19.5	0 0 97 0 19.2 19.2	0 27 26.9	0 27		4		
g g % mm mm mm er g	1. 6. 18 0 14.5 14.5 14.5 14.5	10 10 .03 1 14.5 14.5	5.8 18.1 2 0 19.5 19.5 19.5	0 97 0 19.2 19.2	0 27 26.9	0 27		4		
g % mm mm mm er g	18 0 14.5 14.5 14.5 14	.03 1 0 14.5 14.5	18. ⁹ 2 0 19.5 19.5 19.5	07 0 19.2 19.2	0 27 26.9	0 27		4		
% mm mm mm er g	0 14.5 14.5 14 LN	1 0 14.5 14.5	2 0 19.5 19.5 19.5	0 19.2 19.2	0 27 26.9	0 27)	4		
mm mm er g	0 14.5 14.5 14 LN	0 14.5 14.5	0 19.5 19.5 19.5	0 19.2 19.2	0 27 26.9	0 27)	4	5	
mm mm er g	0 14.5 14.5 14 LN	0 14.5 14.5	0 19.5 19.5 19.5	0 19.2 19.2	0 27 26.9	0 27				
mm mm er g	14.5 14.5 14 LN	14.5 14.5	19.5 19.5 19.3	19.2 19.2	27 26.9	27				
mm mm er g	14.5 14 LN	14.5	19.5 19.1	19.2	26.9		1	+ +		
mm er g	14 LN		19.				1			
υ	LN					95				
υ	44.3	+	40.00		620		1			
	77.5		40.	00	34.	60	1	-		
er g	36.8		32.90		28.	30				
g	9.4		9.40		9.30					
g	7.50		7.10		6.30					
g	27.	.40	23.:	50	19.	00				
%	27	7.4	30.	2	33	.2				
				Ā		-				
						_				
							LIQU	ĪD	30.1	9
							LIMI	Г		9
									18.5	9
	Mai		31.0	33.0		35.0			11.6	ç
	.0 27.0 = 2.1545x - 44.903	.0 27.0 29	.0 27.0 29.0 = 2.1545x - 44.902 Moisture Con	.0 27.0 29.0 31.0 = 2.1545x - 44.902 Moisture Content (%)	.0 27.0 29.0 31.0 33.0 = 2.1545x - 44.902 Moisture Content (%)	.0 27.0 29.0 31.0 33.0 = 2.1545x - 44.902 Moisture Content (%)	0 27.0 29.0 31.0 33.0 35.0 = 2.1545x - 44.902	LIQU LIQU LIMI PLAS LIMI = 2.1545x - 44.902	LIQUID LIQUID LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT	LIQUID 30.1 LIQUID 30.1 LIMIT PLASTIC 18.5 LIMIT 11.6

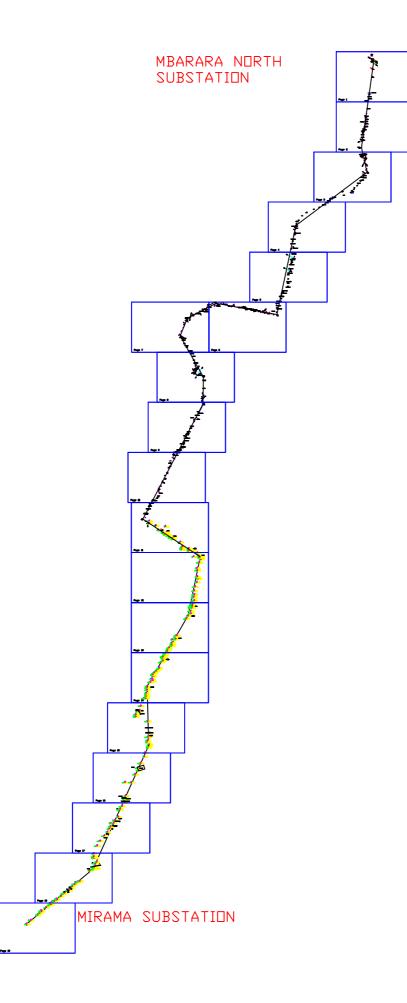
PLASTIC LIMIT AND LIQUID LIMIT	(CONE PENETROMETER)

Project:	Feasibility s	tudy on inte	connec	tion Tr	ansmissio	on Lines	Ugano	da-Kei	iya & U	ganda-	Rwanda	
Location:		M TP1			Sam	ole Sour	ce:					
Soil Description												
Sampling Date:					Test Met	hod			BS1377	7 part 2 1	990.	
Festing Date:					Technici	an			Μ	larriam.		
PLASTIC LIMI	T	Test no.	1	1	2		3		4	4	Average	e
Contauner no.			()	W	'						
Mass of wet soil	+ container	g	16.	.50	18.0	00						
Aass of dry soil	+ container	g	15.	.30	16.4	40						
Aass of containe	r	g	9.2	20	9.4	0						
Aass of moisture	;	g	1.2	20	1.6	0						
Mass of dry soil		g	6.	10	7.0	0						
Moisture content		%	19.	.67	22.8	36					21.26	
LIQUID LIMIT	1		1	1	2		3		4	4	5	
nitial dial gauge	reading	mm	0	0	0	0	0	0				
Final dial gauge i	reading	mm	15.5	15.9	21.4	21.2						
Cone Penetration		mm	15.5	15.9	21.4 21.2							
Average cone per	netration	mm	15	5.7	21.3						<u> </u>	
Container no.			KA		BH							
Mass of wet soil		g	25.2		32.5							
Aass of dry soil		g	20		26.2							
Mass of containe		g	3.6		9.3		_	_				_
Mass of moisture		g	5.2		6.3							
Mass of dry soil		g	16.		16.9							
Moisture content		%	31		37.	3						
[28											
	26											
	<u>ا</u> 24							_				
	ation 22							-				
	Cone Penetration (mm) Cone Penetration (mm) Cone Penetration (mm)					\bigwedge		_	LIQUI LIMIT		36.0	%
	2 18 Cone				\checkmark			_			21.2	
	16							-	PLAST LIMIT		21.3	%
	14	27.0 20	0 31.0	0 33.	.0 35.0	37.0	39.0		PLAST		14.7	%
	25.0	27.0 29.		sture Con	tent (%)	= 1.0052		L	INDEX	K	1.17	,0
					у	= 1.0052)	- 10.174	•				
Chashed I.												
Checked by:	S. <i>P.Kisitu</i> .aboratory E											

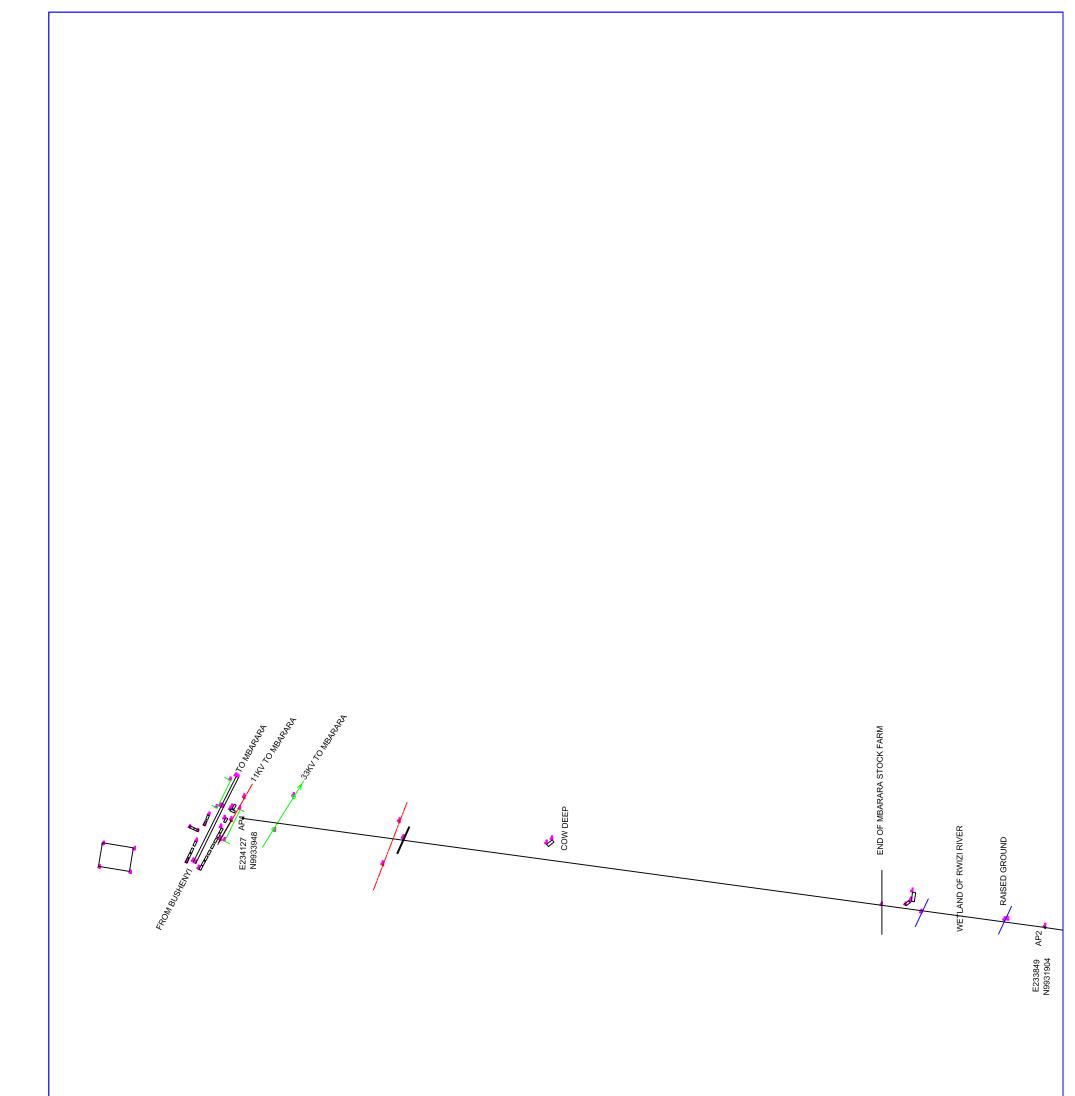
Project:	Feasibility stu	ıdy on inte	connec	tion Tr	ansmissi	on Line	s Ugan	da-Ke	nya & Uganda-	Rwanda	
Location:		M TP2			Sam	ple Sour	ce:				
Soil Descriptior											
Sampling Date:					Test Met	hod			BS1377 part 2	1990.	
Testing Date:					Technici	an			Marriam.		
		T (2			<u>,</u>	4	A	
PLASTIC LIM		Test no.	1 k		2 XE		3	5	4	Averag	ge
Mass of wet soi	L container	~	11.		11.4						
Mass of dry soil		g	11.		10.0						
Mass of contain		g	3.0		4.0						
Mass of moistur		g	0.2		0.8	-					
Mass of dry soil		g	7.4		6.6						
Moisture conter		g %	9.4		12.					10.79	
		/0		10	12.					10.79	
LIQUID LIMI	Т		1	1	2		3	3	4	5	
Initial dial gaug		mm	0	0	0	0	0	0			
Final dial gauge	-	mm	16.4	16.6	21.4	21.5					
Cone Penetratio	n	mm	16.4	16.6	5 21.4 21.5						
Average cone p	enetration	mm	16	5.5	21.4 21.5 21.45						
Container no.			204		182						
Mass of wet soi	l + container	g	53.7		47.	50					
Mass of dry soil		g	45		38.9	97					
Mass of contain	er	g	5.5		4.9	0					
Mass of moistur		00	8.70		8.53						
Mass of dry soil		g	39.	.50	34.0)7					
Moisture conter	ıt	%	22	.0	25.	0					
	28 26 24 22 20 20 22 20 20 20 20 20 20 20 20 20			/					LIQUID LIMIT PLASTIC LIMIT	24.2	
	1420.0	22.0	24. Mois	0 sture Con	26.0 tent (%)	28.0 v = 1.6438		30.0 95	PLASTICITY INDEX	13.4	

Project: I	Feasibility stu	ıdy on inte	connec	tion Tr	ansmissi	on Line	s Ugan	da-Ke	nya &	Uganda-	Rwanda	
Location:		M TP 4			Sam	ple Sou	rce:					
Soil Description												
Sampling Date:					Test Met	hod			BS137	7 part 2	1990.	
Testing Date:					Technici	an				Marriam.		
					1				n			
PLASTIC LIMI	Т	Test no.	-	1	2			3		4	Averag	je
Contauner no.				10	62							
Mass of wet soil		g		.70	14.3							
Mass of dry soil -		g		30	13.							
Mass of container		g		70	9.3							
Mass of moisture		g		40 60	1.0 4.0							
Mass of dry soil Moisture content		g %		.00	25.0						25.00	
woisture content		70	23.	.00	23.						23.00	
LIQUID LIMIT			1	1	2			3		4	5	
Initial dial gauge		mm	0	0	0	0	0	0			-	
Final dial gauge r	-	mm	14.5	14.4	23.4	23.5						
Cone Penetration	-	mm	14.5	14.4	23.4 23.5				1	1 1		
Average cone per	netration	mm	14	.45	23.4	45				1	L	
Container no.			Y		503							
Mass of wet soil -	+ container	g	30.6		31.3	20						
Mass of dry soil -		g	20.9		20.30							
Mass of container		g	3.8		3.8	0						
Mass of moisture		g	9.'		10.9							
Mass of dry soil		g		.10	16.							
Moisture content		%	56	5.7	66.	1						
Г												
	28											
	26											
	Î 24											
	etratio								LIQU	ID	62.5	
	24 22 20 20 20 20 20 20 20 218218								LIQU			9
	<u>ເ</u> ັ້ 18		+	\rightarrow				-	PLAS	TIC	25.0	
	16							-	LIMI			ç
	14	2.0 54.0 5	56.0 58.	0 60.0	62.0 64	.0 66.0	68.0	70.0	PLAS INDE	TICITY X	37.5	ç
			Moi	sture Con	tent (%) y	= 0.9641	k - 40.237	7				
									1			

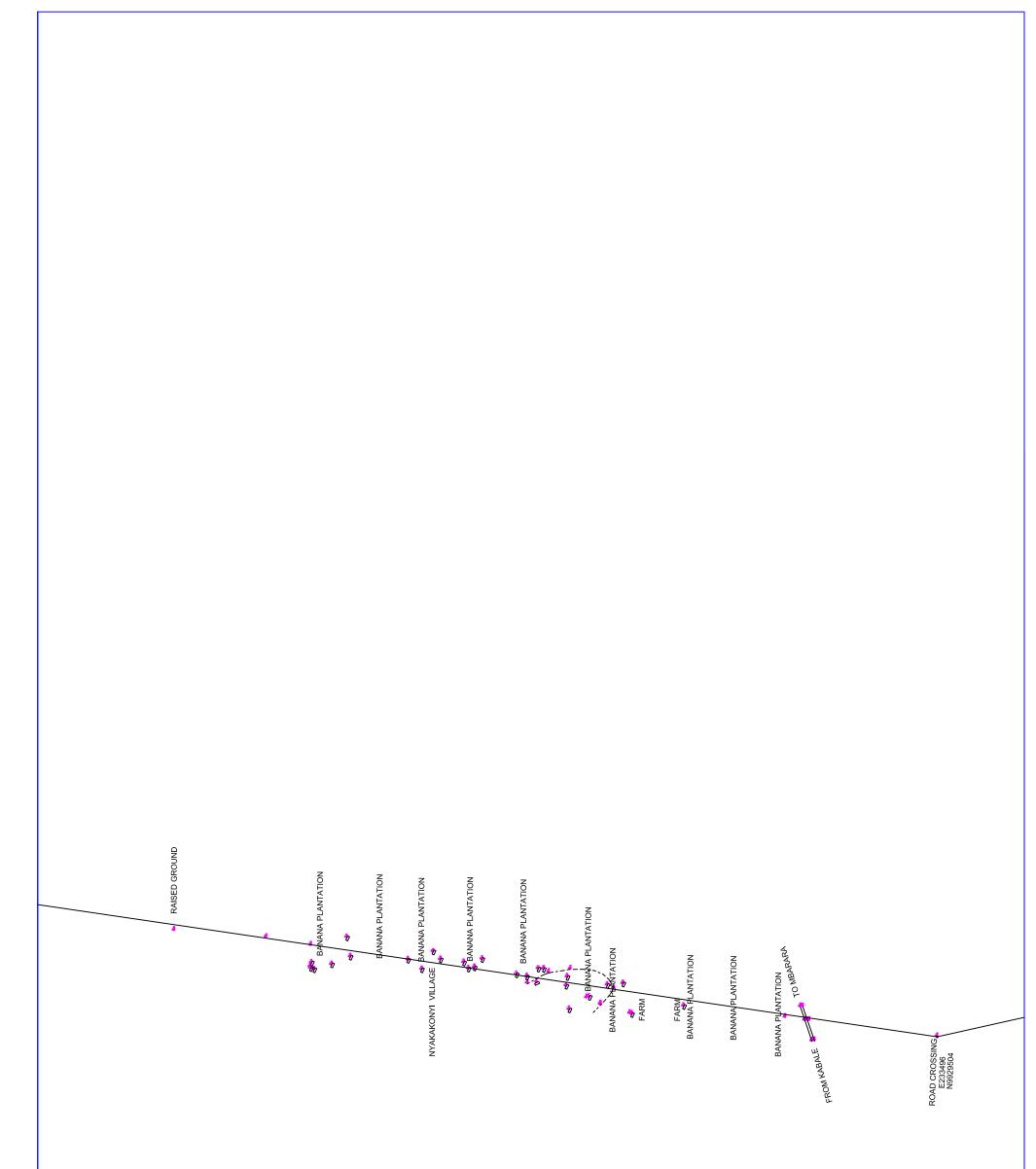
Project:	Feasibility st	udy on inte	connec	tion Tr	ansmissio	on Line	s Ugan	da-Kei	nya & Uganda-	Rwanda	
Location:		M TP5			Sam	ole Sour	rce:				
Soil Description											
Sampling Date:					Test Met	hod			BS1377 part 2	1990	
Testing Date:					Technici				Marriam.	1770.	
resung Duter											
PLASTIC LIM	T	Test no.]	l	2		3	3	4	Averag	e
Contauner no.			2	Z	18	7					
Mass of wet soil	+ container	g	12	.50	13.8	30	·				
Mass of dry soil	+ container	g	10	.70	11.	70					
Mass of containe	r	g	5.	10	5.4	0					
Mass of moisture)	g	1.5	80	2.1	0					
Mass of dry soil		g	5.	50	6.3	0					
Moisture content		%	32.	.14	33.3	33				32.74	
LIQUID LIMIT			1		2		3	3	4	5	
Initial dial gauge		mm	0	0	0	0	0	0			
Final dial gauge	-	mm	13.4	13.2	21.7	21.7	•				
Cone Penetration	-	mm	13.4	13.2	21.7 21.7 21.7 21.7						
Average cone pe		mm	13		21.7 21.7 21.7						
Container no.			642		TU						
Mass of wet soil	+ container	g	34.4		44.	50		L			
Mass of dry soil	+ container	g	27		32.9	90					
Mass of containe		g	9.6		9.60						
Mass of moisture	9	g	7.40		11.60						_
Mass of dry soil		g	17.	40	23.3	30					
Moisture content		%	42	5	49.	8					
											_
	28										
	26										
	€ ²⁴							_			
	Come Penetration (mm)							-			
	20								LIQUID	48.3	
	H 18 −−−−								LIQUID		•
	⁵ 16		$ \land $					_	PLASTIC	32.7	
	14		-					_	LIMIT		
	12	-		-					PLASTICITY	15.6	
	40.0	42.0 44.		0 48. sture Con		52.0	54.0		INDEX	13.0	
			1101	y	= 1.1576x	- 35.929					

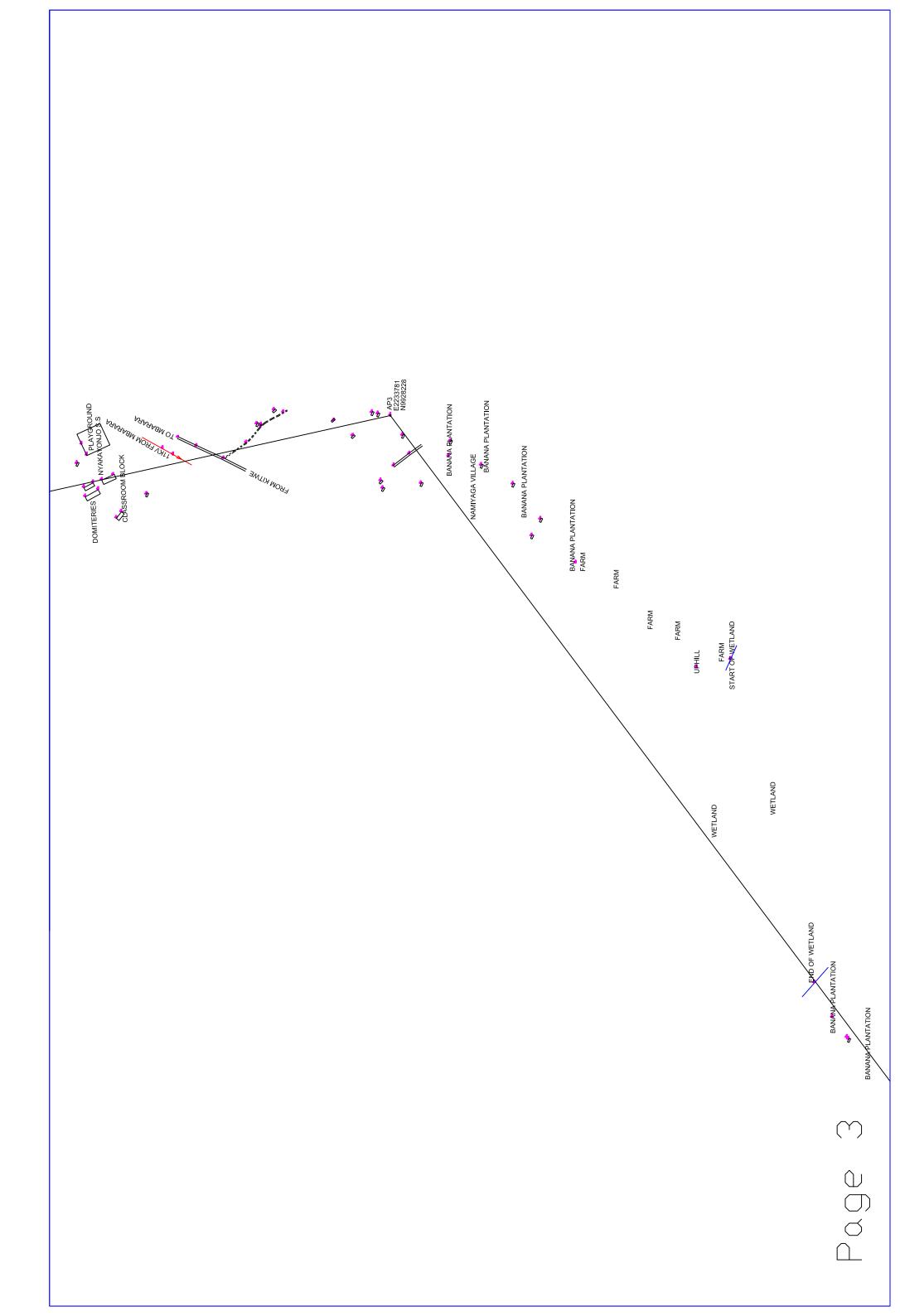

Project: I	Feasibility st				1				J	- 8		
Location:		M-TP 6			Sam	ple Sou	rce:					
Soil Description												
Sampling Date:					Test Met	hod			BS137	7 part 2 1	990	
Testing Date:					Technici					Aarriam.	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
U												
PLASTIC LIMI	Г	Test no.	1	1	2		3	3		4	Averag	e
Contauner no.			50)3	20	4						
Mass of wet soil -	+ container	g	12	.80	14.9	90						
Mass of dry soil +		g		.20	13.2							
Mass of container	•	g		80	5.3							
Mass of moisture		g		60	1.7							
Mass of dry soil		g		40	7.9						<u></u>	
Moisture content		%	21.	.62	21.5	52					21.57	
LIQUID LIMIT]	1	2		3	3		4	5	
Initial dial gauge	reading	mm	0	0	0	0	0	0				
Final dial gauge r	eading	mm	13.7	13.9	20.4	20.8						
Cone Penetration		mm	13.7	13.9	20.4	20.8						
Average cone per	etration	mm	13	3.8	20.	6						
Container no.			620									
Mass of wet soil -		g	44.9		37.							
Mass of dry soil -		g		36.9		50						
Mass of container		g	9.7		9.4		_	_		_		
Mass of moisture		g	8.0		7.0							
Mass of dry soil		g	27.		21.1				-			
Moisture content		%	29	9.4	33.	2						
Γ												
	28											
	26							_				
	Î ²⁴											
	1) 22										<u> </u>	
	Cone Peretration (mm)								LIQU		32.8	ç
	4 18								LIMI			
	16 14								PLAS LIMI		21.6	(
	12	22.0 24.0 2	26.0 28.	0 30.0	32.0 34	.0 36.0	38.0	40.0	PLAS INDE	TICITY X	11.3	
			Moi	sture Con	tent (%)	y = 1.	8068x - 3	9.341				
L									1			

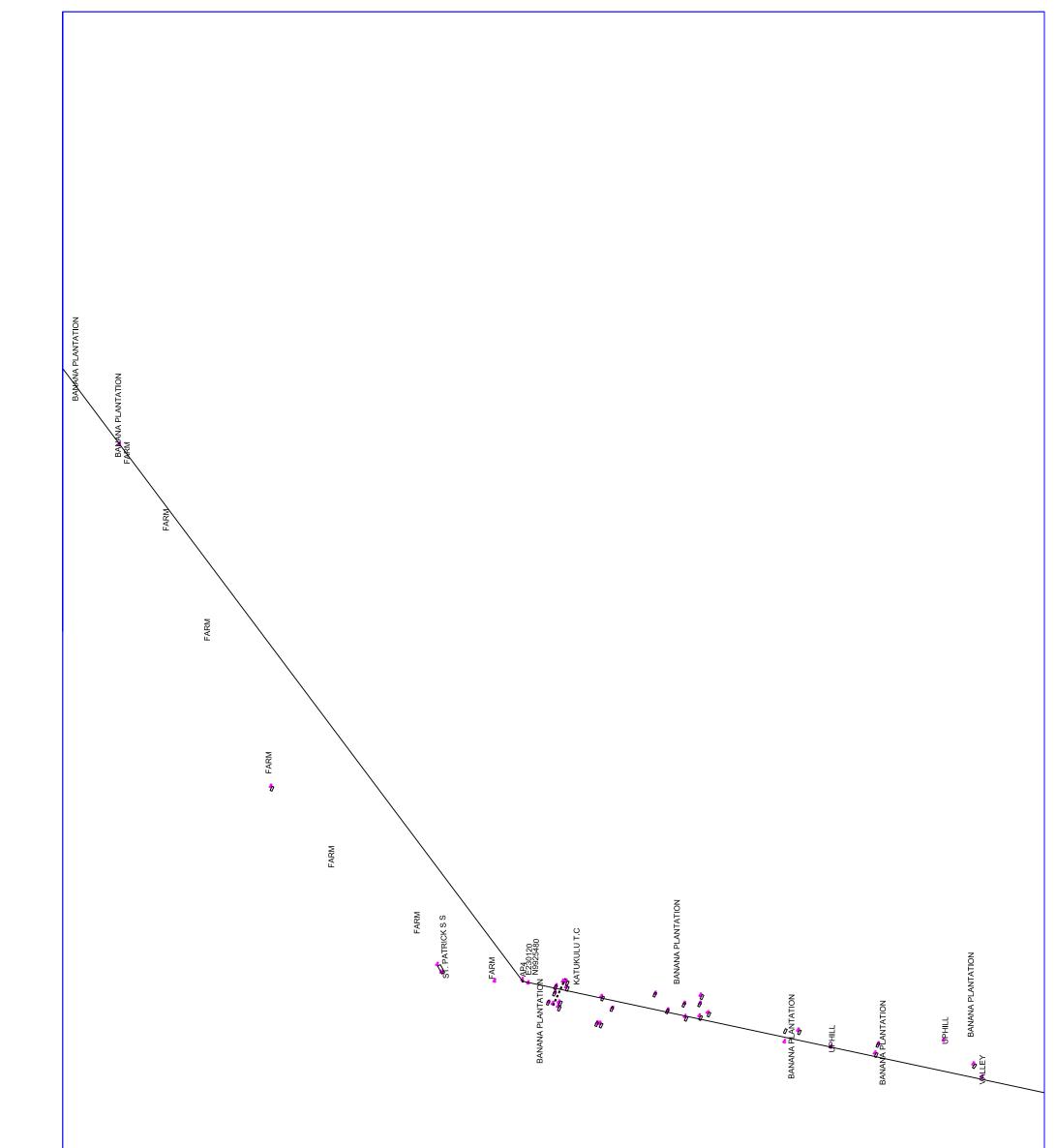
PLASTIC LIMIT AND LIQUID LIMIT	(CONE PENETROMETER)

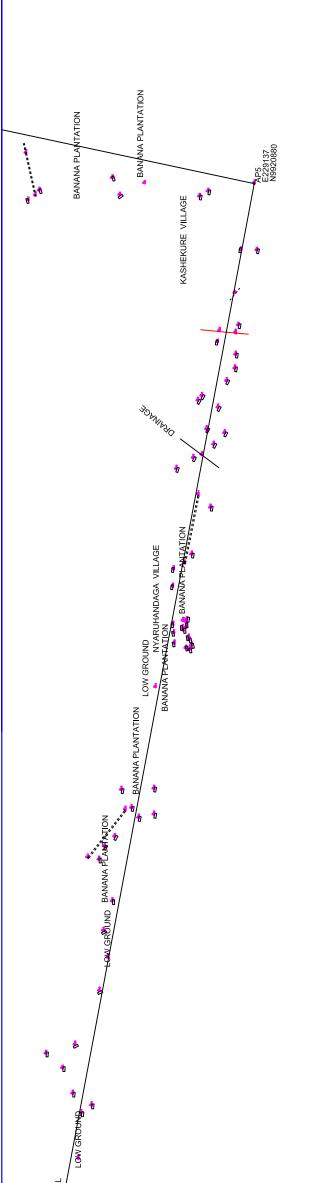

Location:		M TP7									
Soil Description					Samı	ple Sour	ce:				
_					1						
Sampling Date:					Test Met				BS1377 par		
Testing Date:					Technici	an			Marria	am.	
PLASTIC LIM	Т	Test no.	1	1	2		3	}	4	Averag	re.
Contauner no.		rest no.		r r	60			·			,•
Mass of wet soil	+ container	g		.80	16.1						
Mass of dry soil	+ container	g	15	.80	15.2	23					
Mass of containe	er	g	9.:	50	9.6	0					
Mass of moistur		g	1.0	00	0.8	7					
Mass of dry soil		g		30	5.6						
Moisture conten	t	%	15	.87	15.4	45				15.66	
LIQUID LIMI	<u>г</u>		1	1	2		3	2	4	5	
Initial dial gauge		mm	0	0	0	0	0	, 0		5	
Final dial gauge	-	mm	15.0	15.2	23.9	24.1	•	0			
Cone Penetration	-	mm	15	15.2	23.9	24.1					
Average cone pe	enetration	mm	15	5.1	24	ŀ					
Container no.			36	1							
Mass of wet soil	+ container	g	44.9		49.5	50					
Mass of dry soil	+ container	g	39.0		39.6						
Mass of containe		g	15.0		5.7						
Mass of moistur		g	5.9		9.9						
Mass of dry soil		g	24.		33.9					_	
Moisture conten	t	%	24	.6	29.	2					
	[
	28										
	26							-			
	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			1				-			
	u 22							-			
	02							-	LIQUID	27.1	%
	Cone Paretration (mm)								LIMIT		-70
	16								PLASTIC LIMIT	15.7	%
	12	2.0 24.0 2	26.0 28.		32.0 34.			40.0	PLASTICIT INDEX	ГҮ 11.5	9
			Mois	sture Con	tent (%) _{y = 1}	.9263x -	32.255				
									<u>.</u>		

ANNEX C. GENERAL MAP: MBARARA – MIRAMA

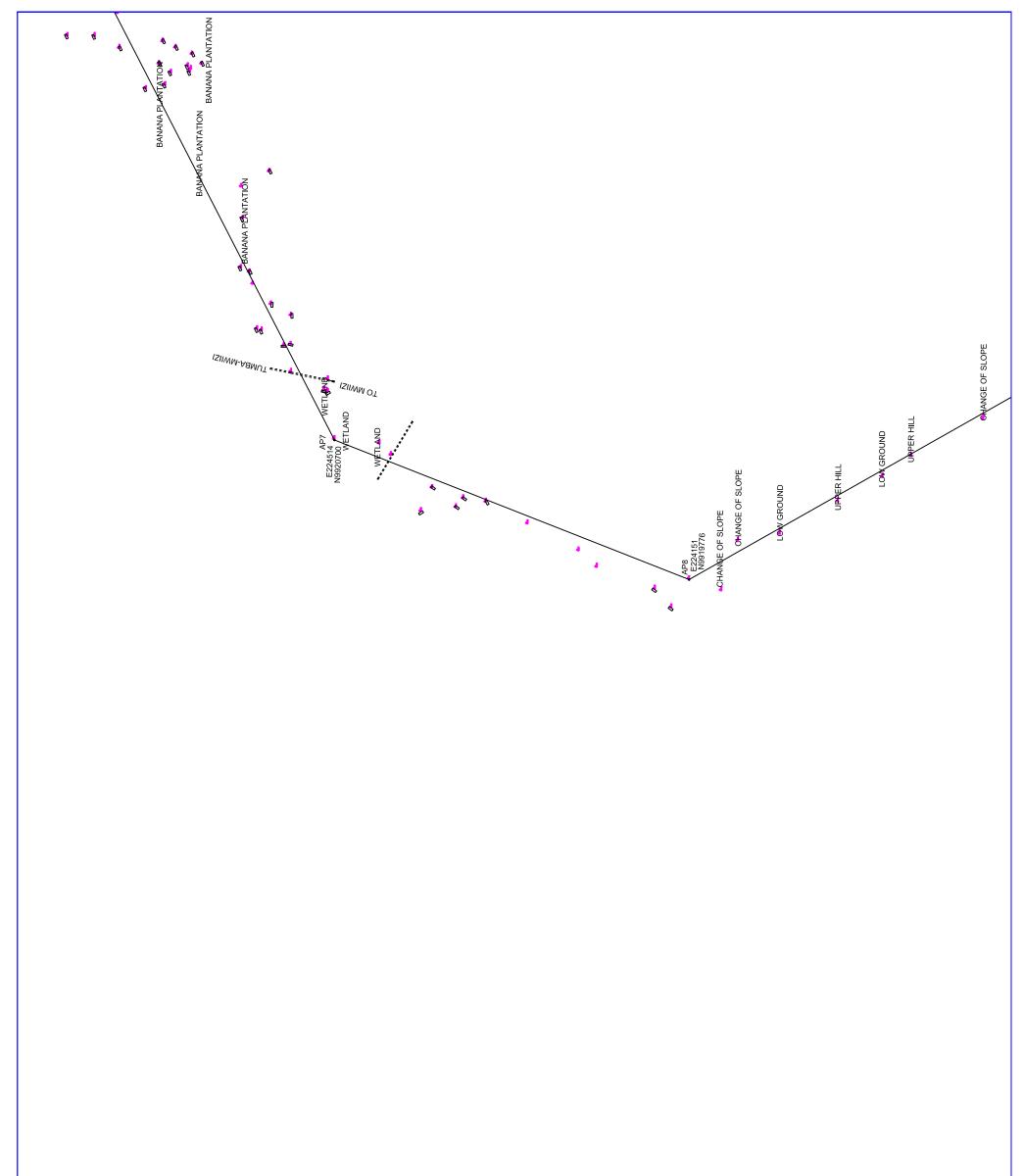

MBARARA - MIRAMA 220 kV LINE

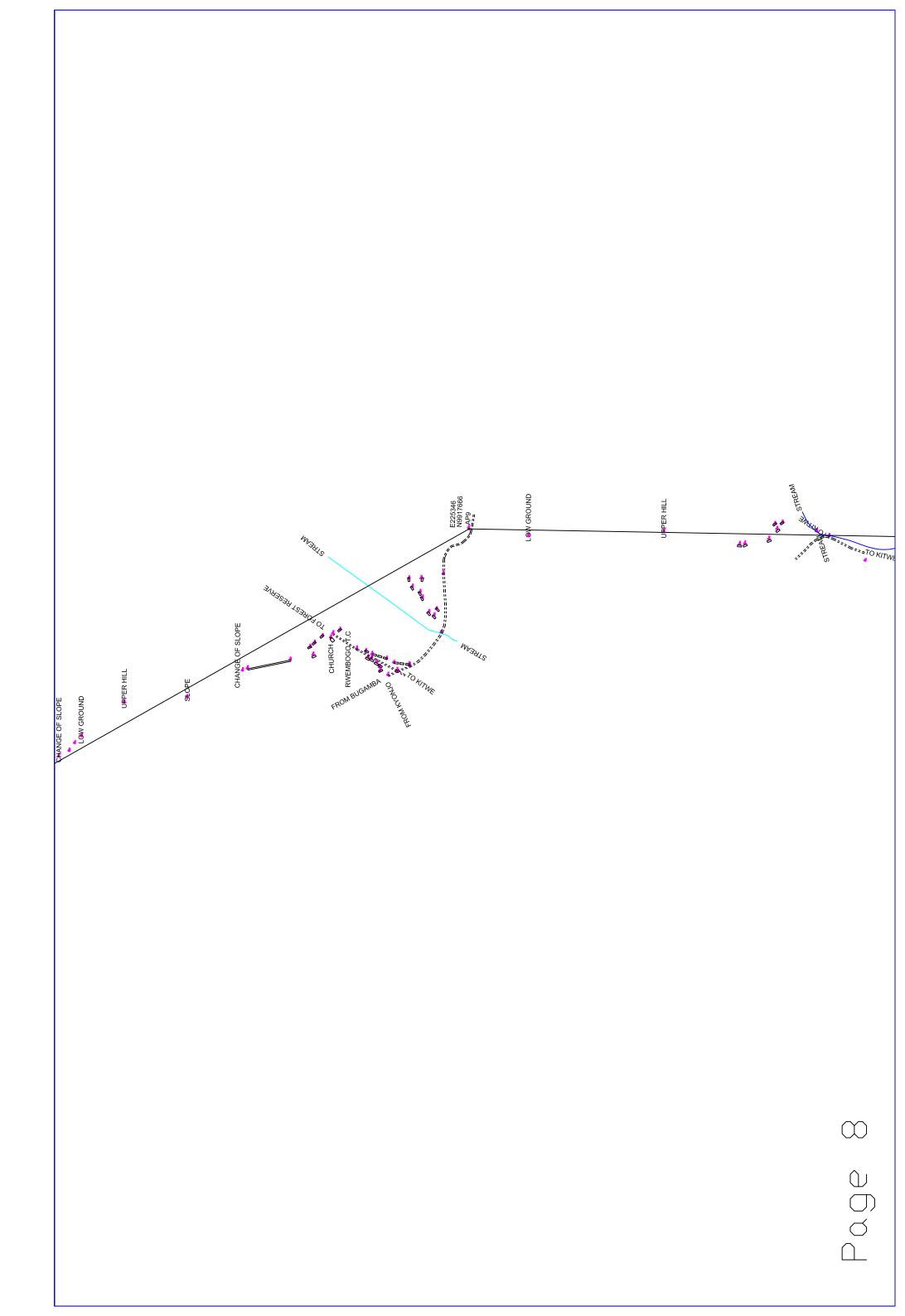

ANNEX D. MAP SHEETS: MBARARA – MIRAMA

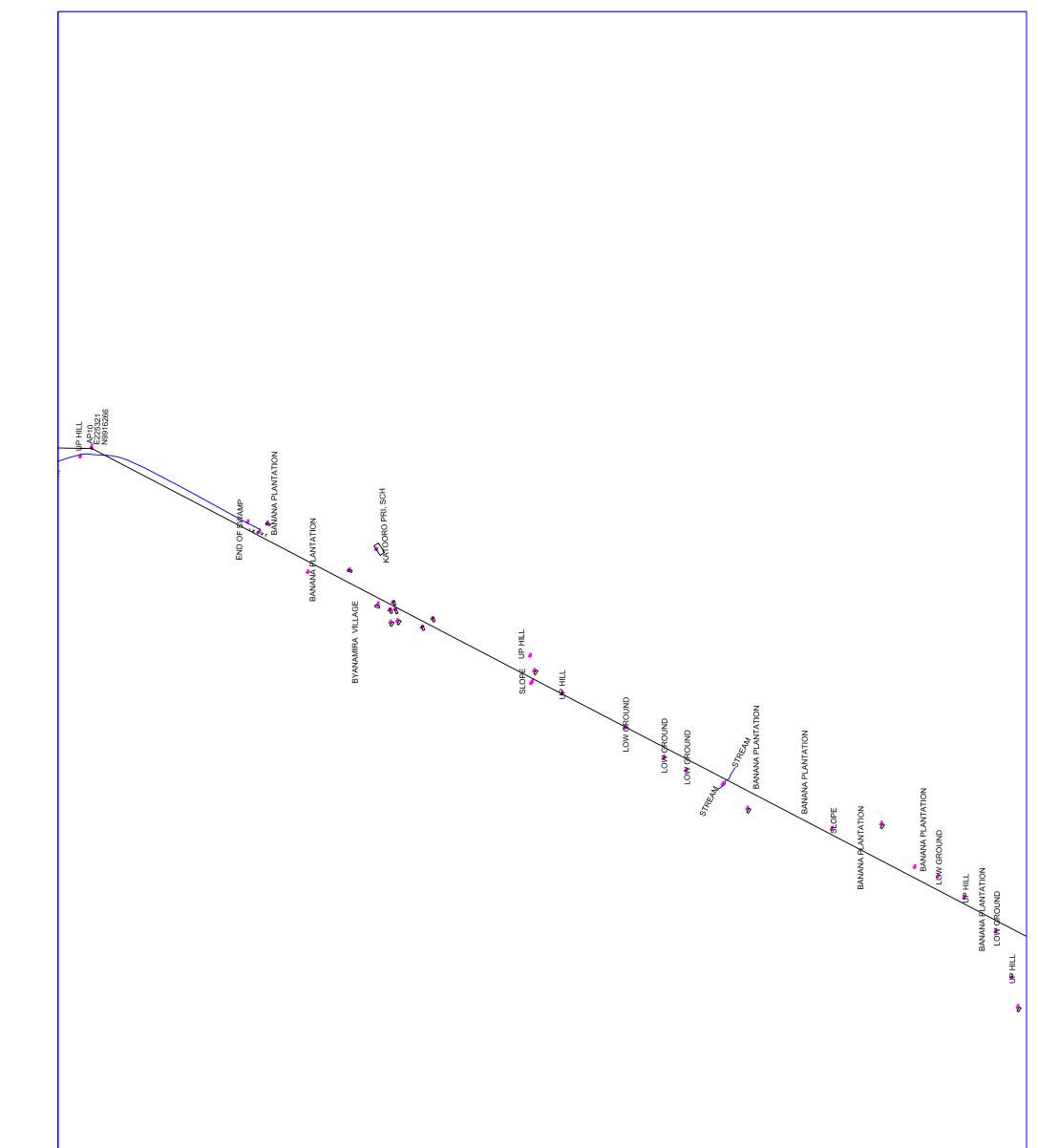


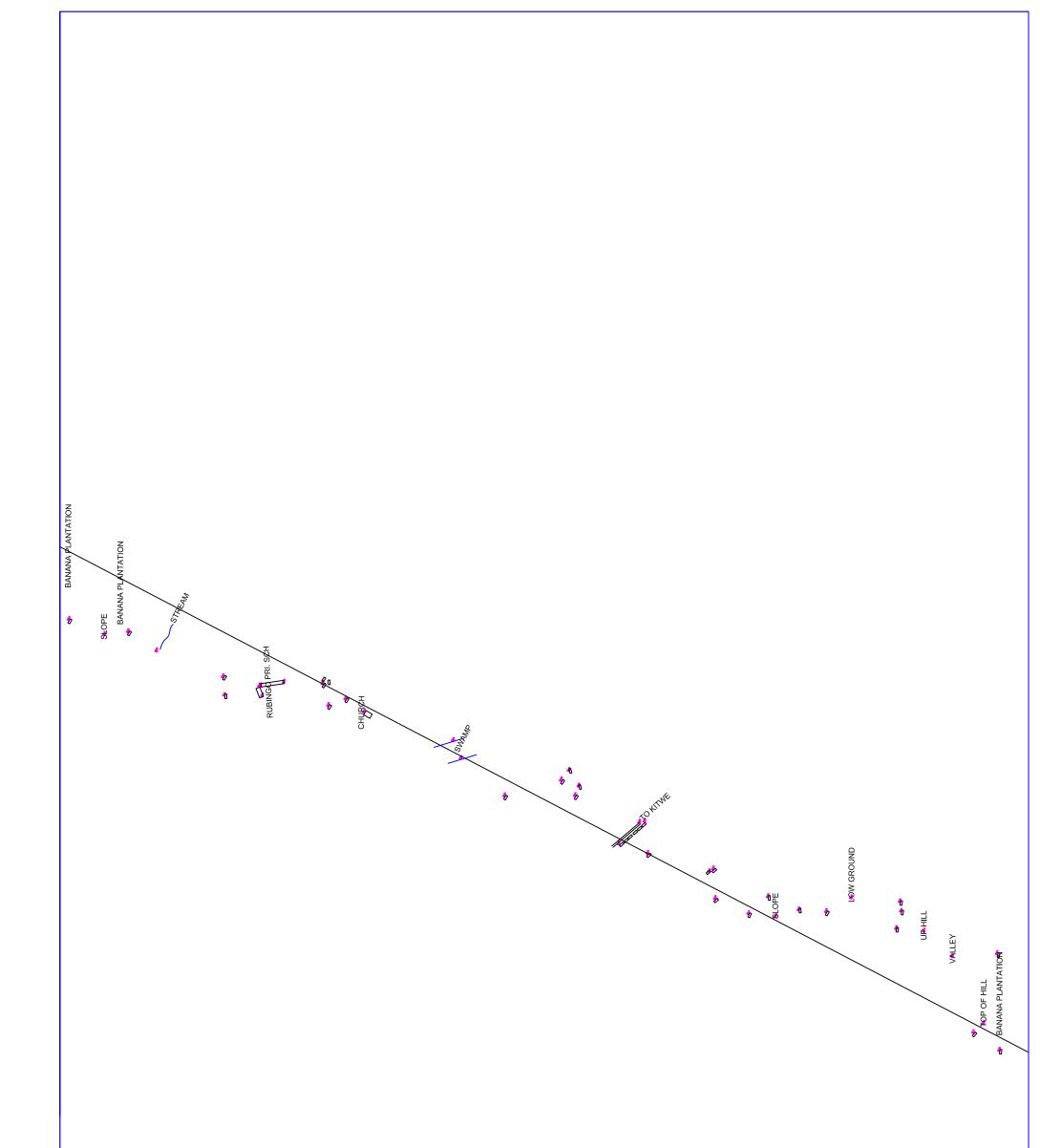




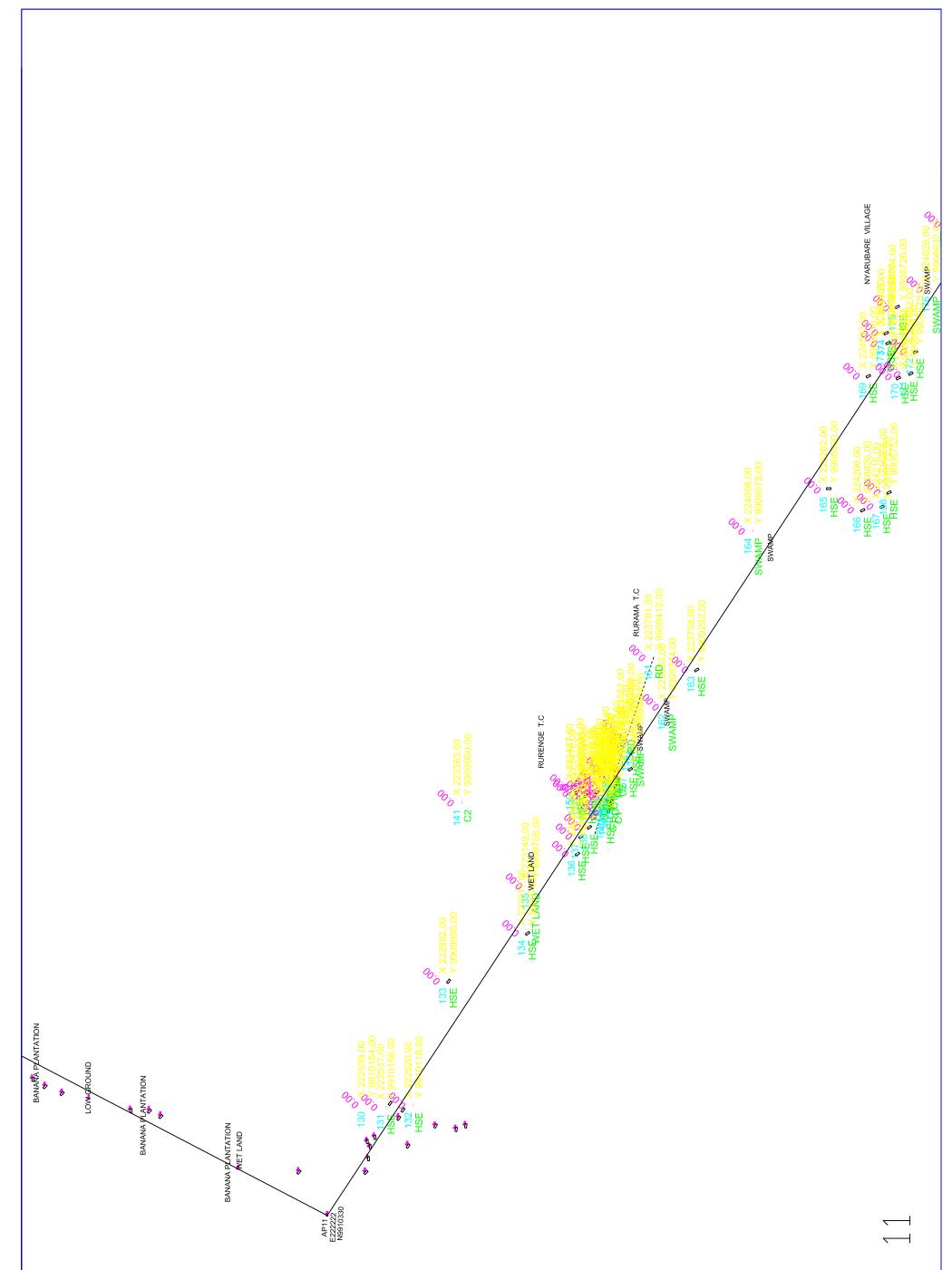


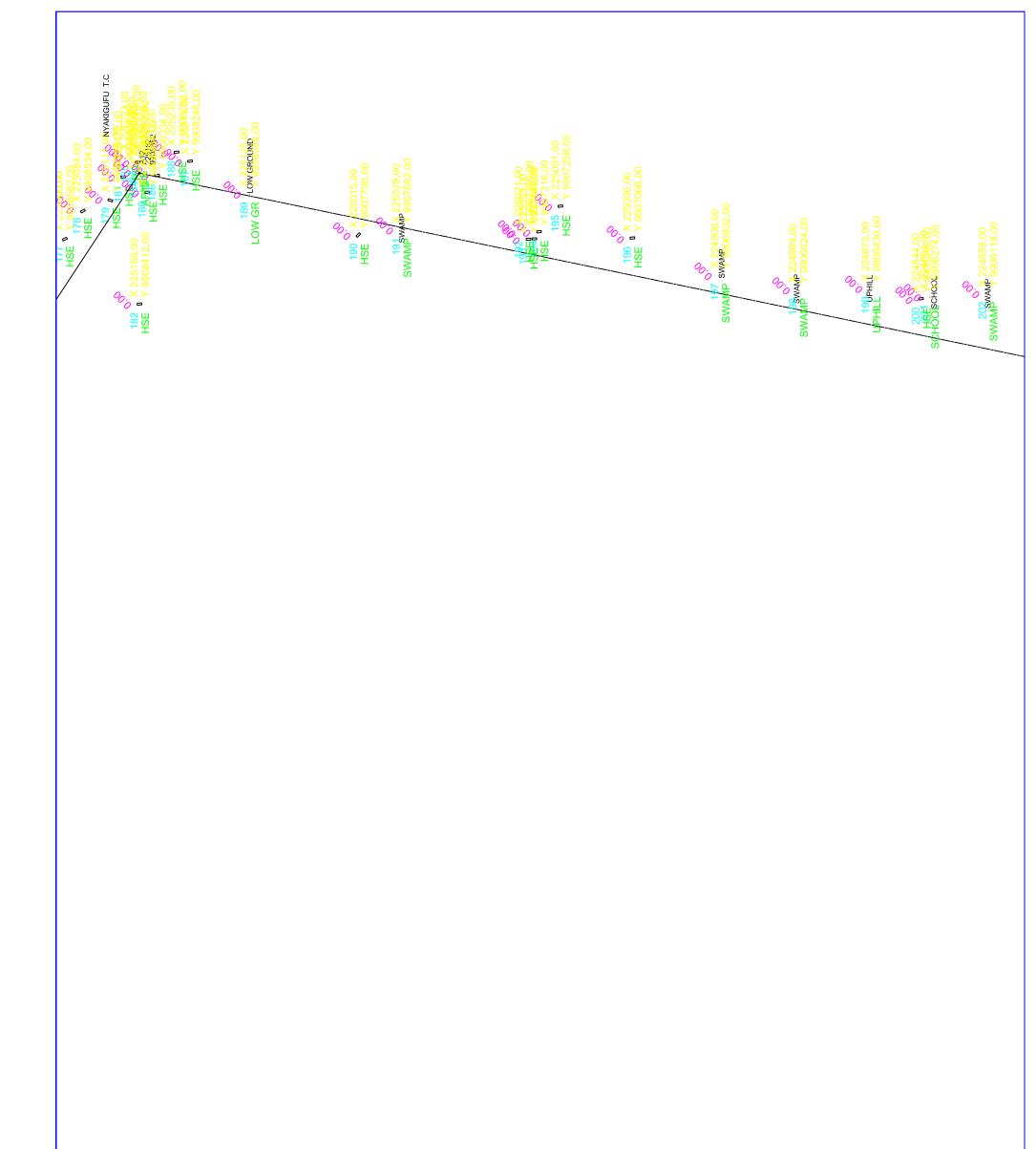


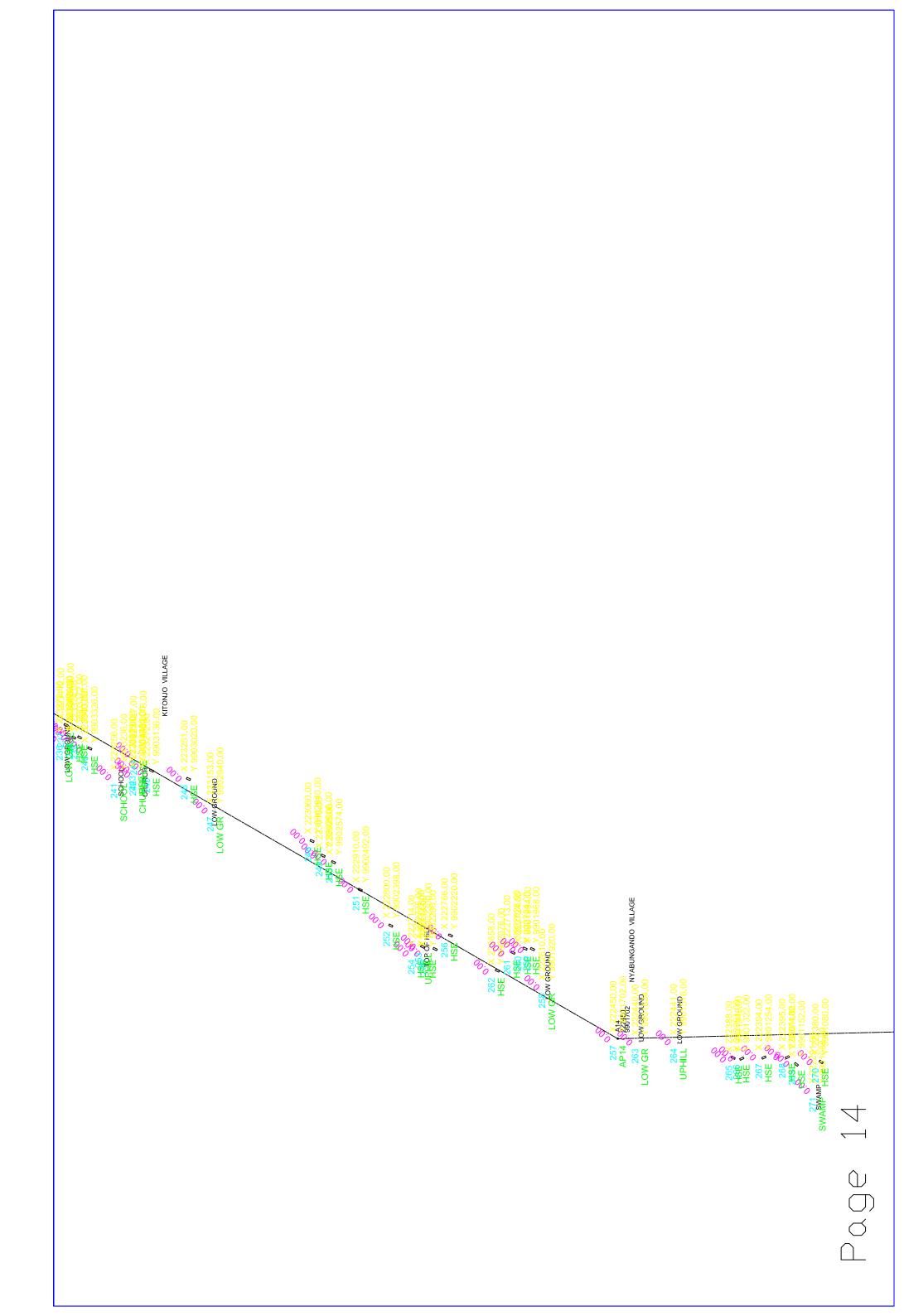


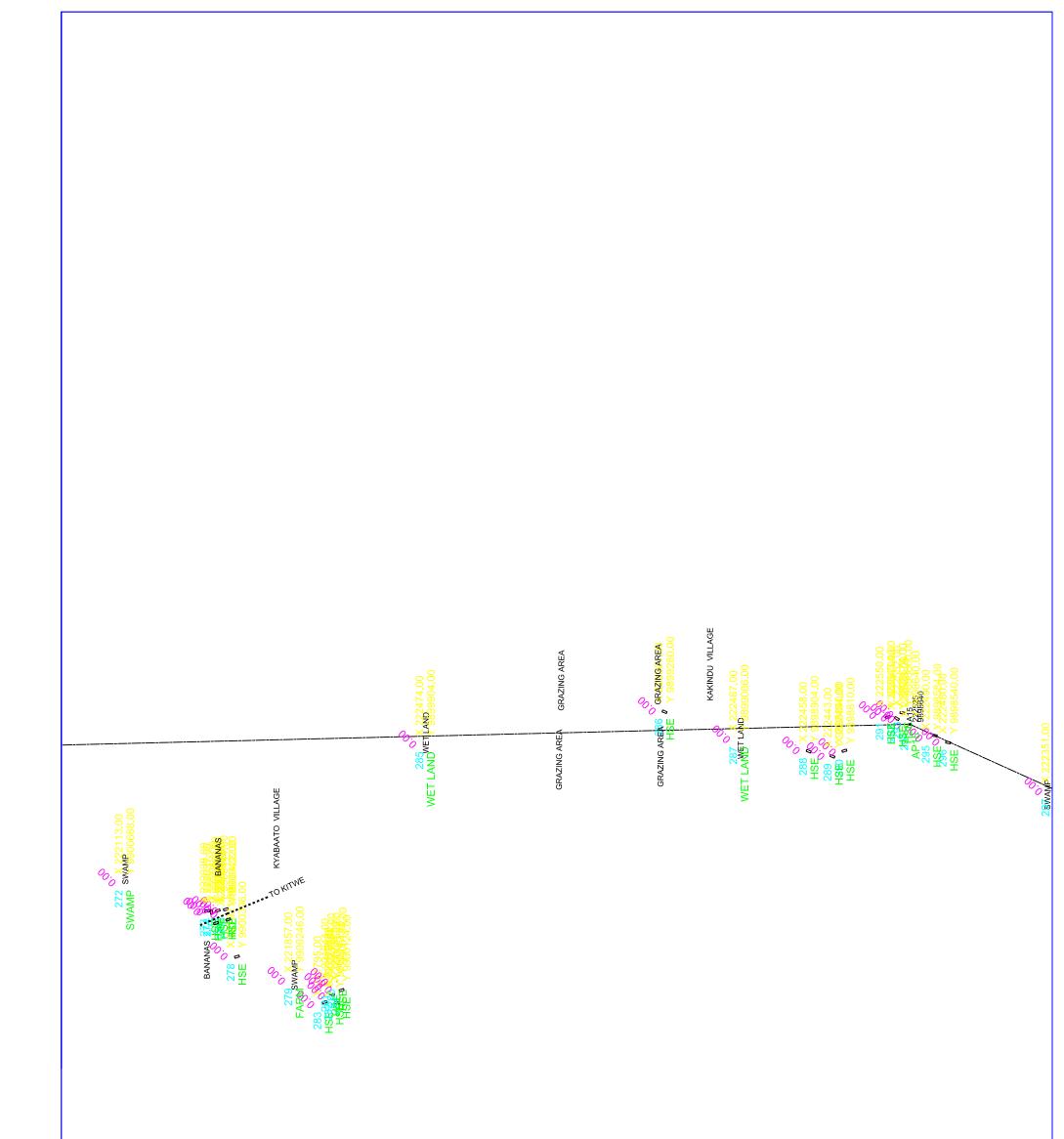


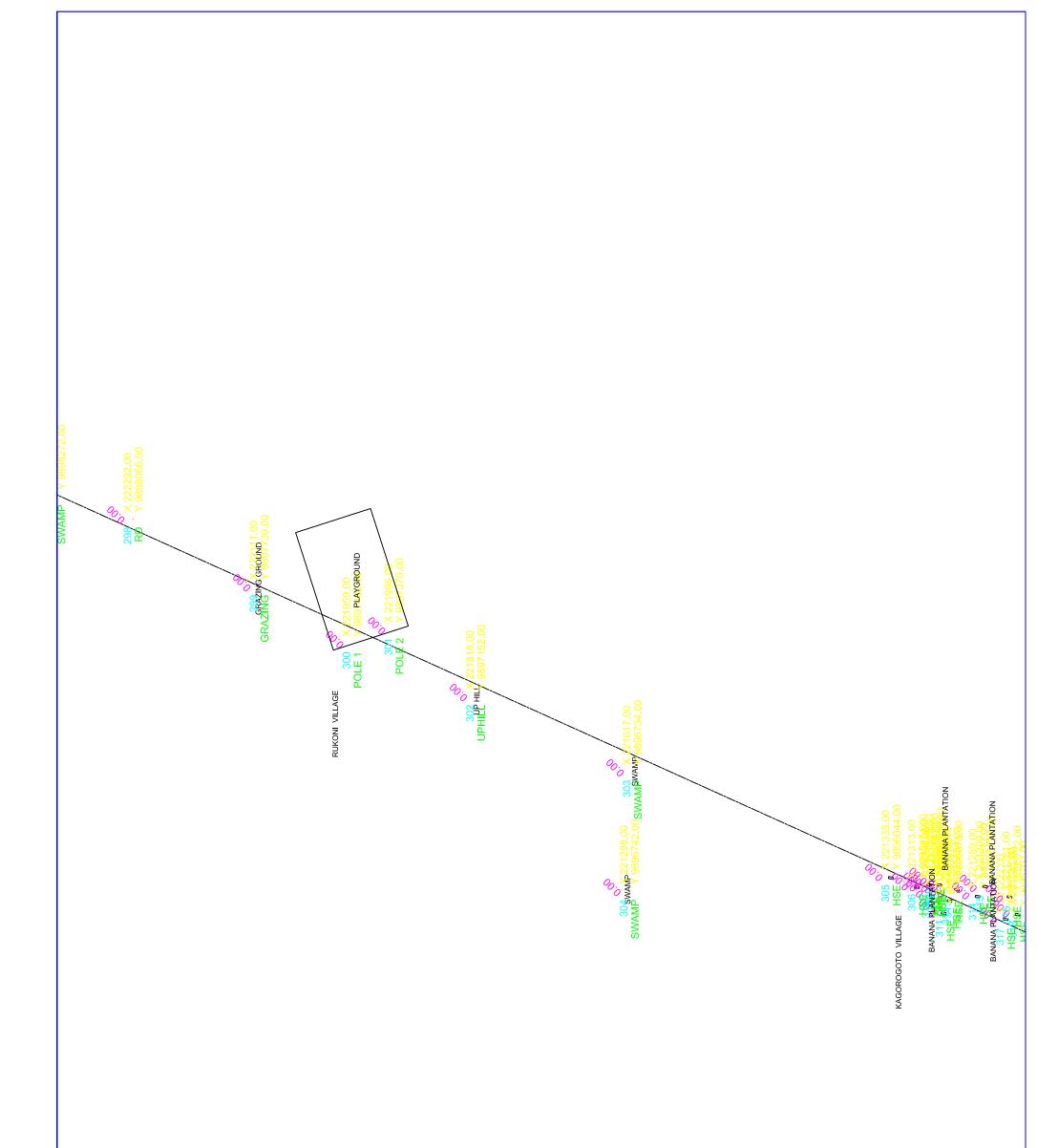
 $\left| \right\rangle$ Page

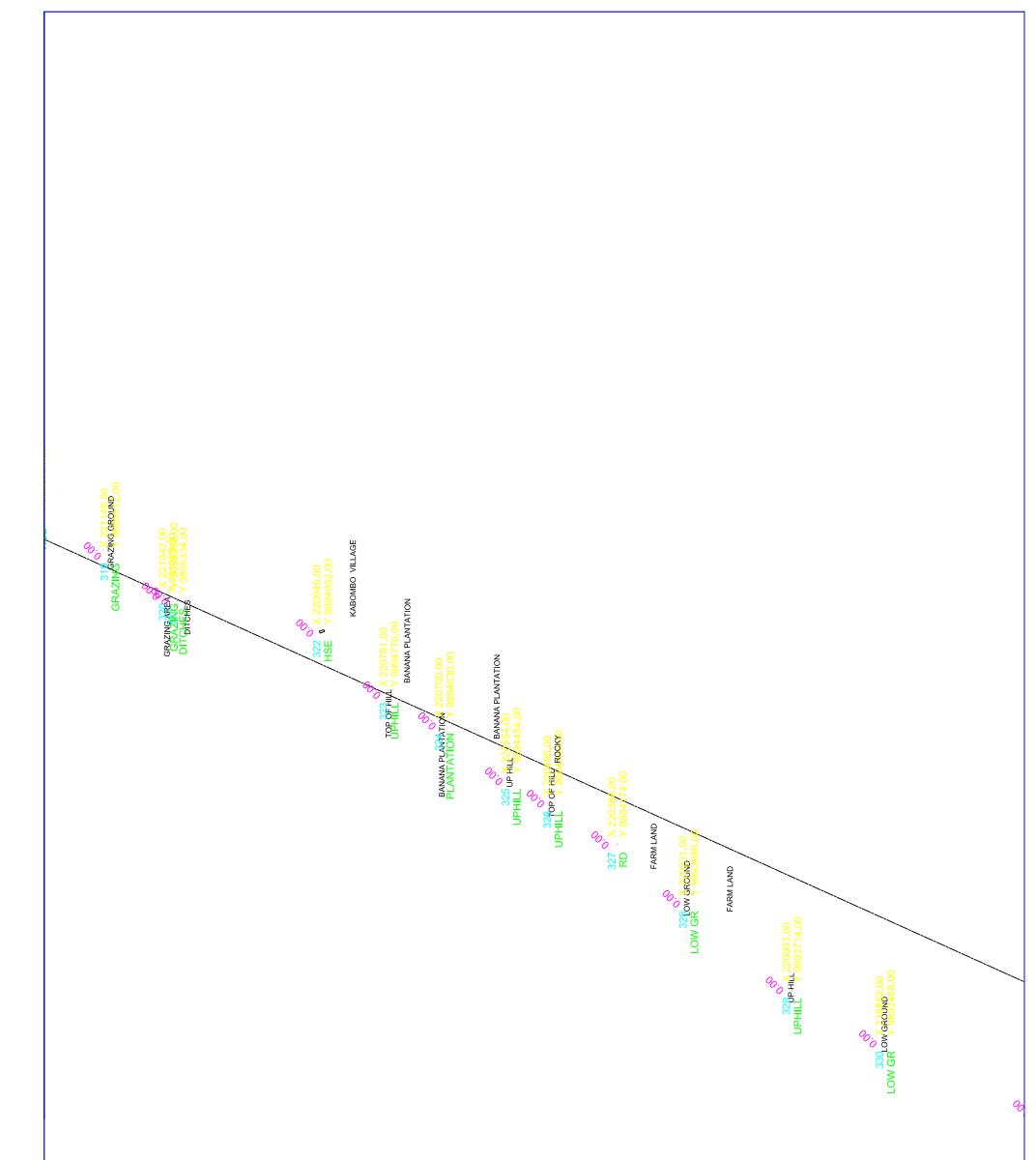


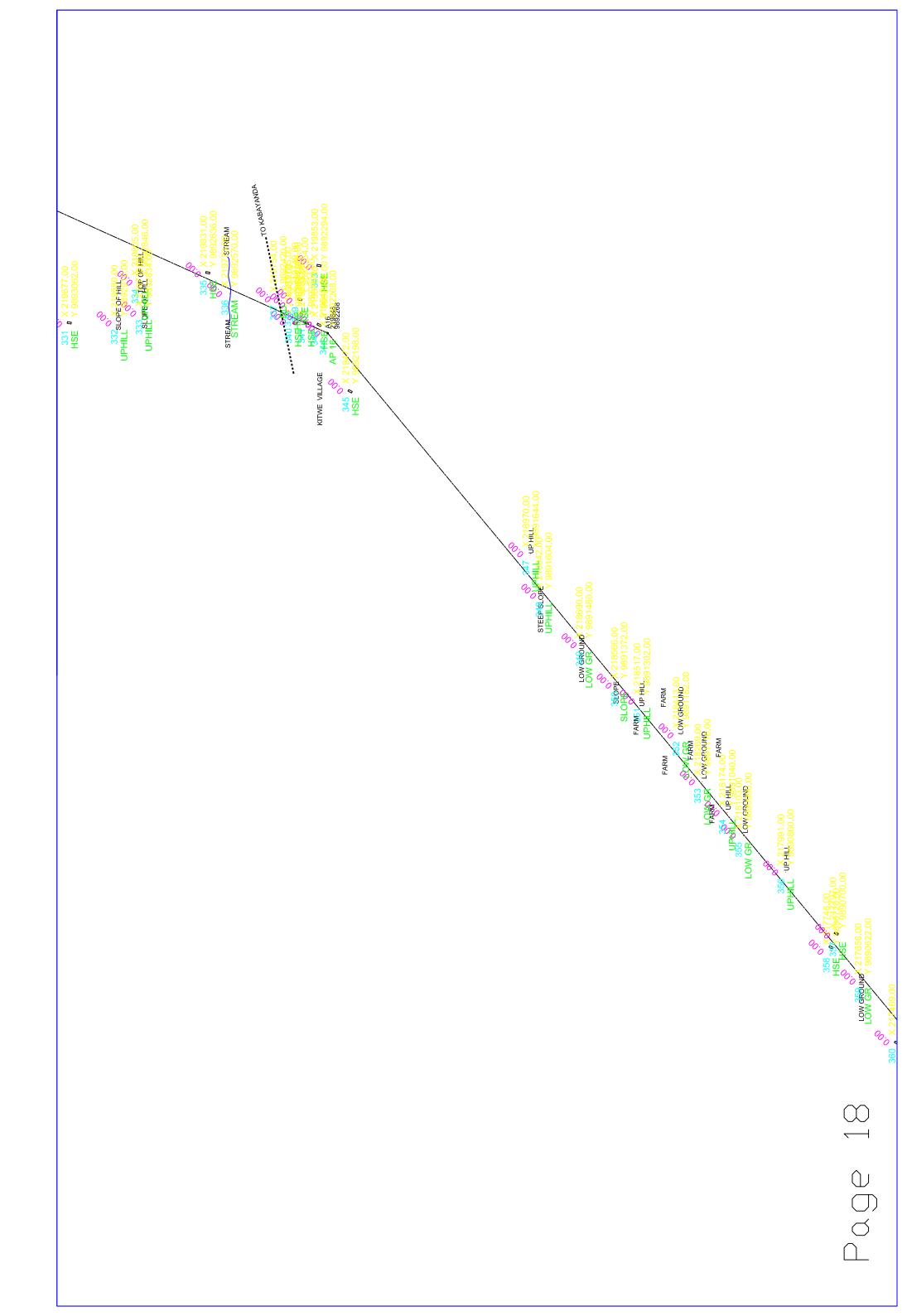


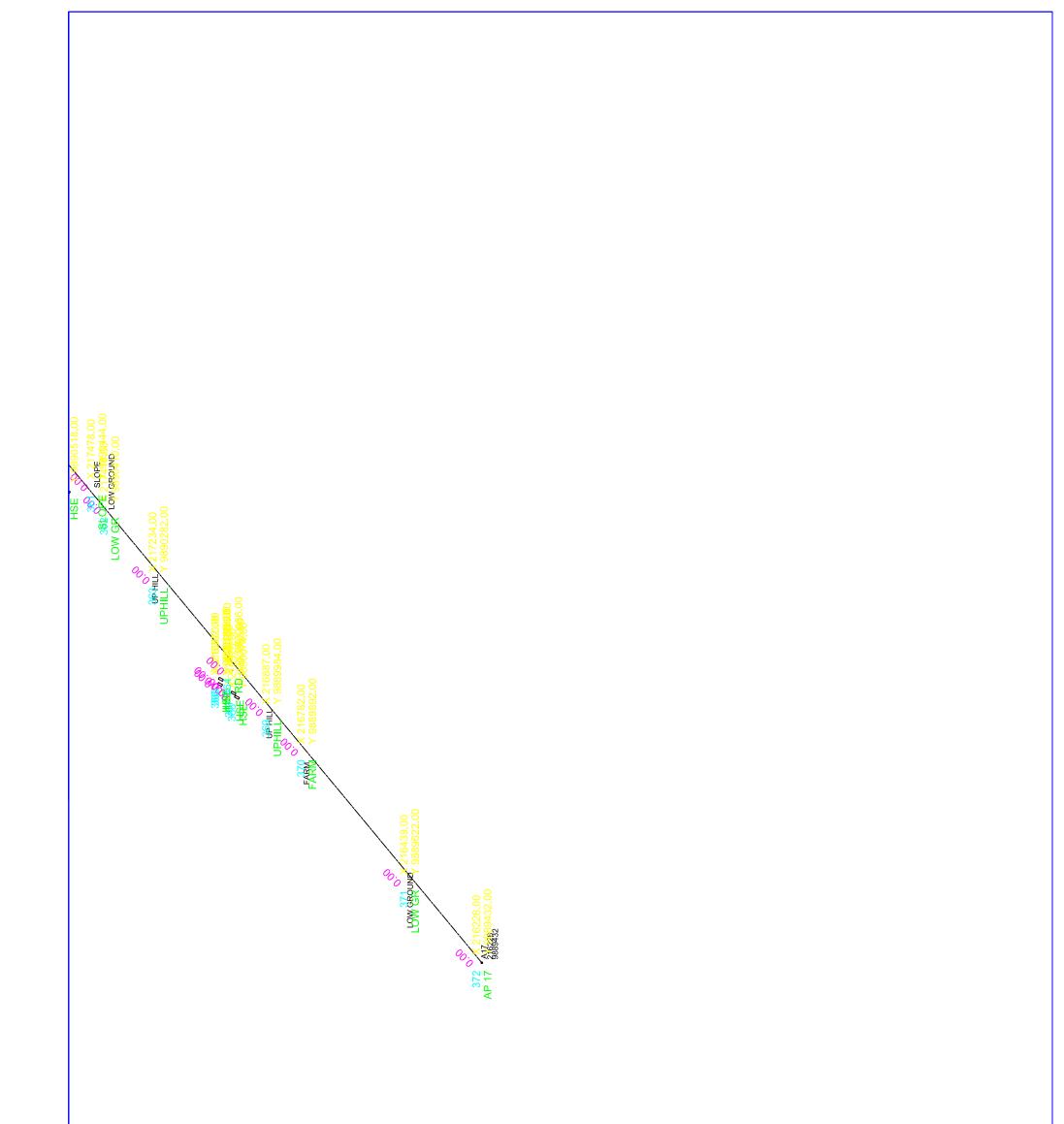


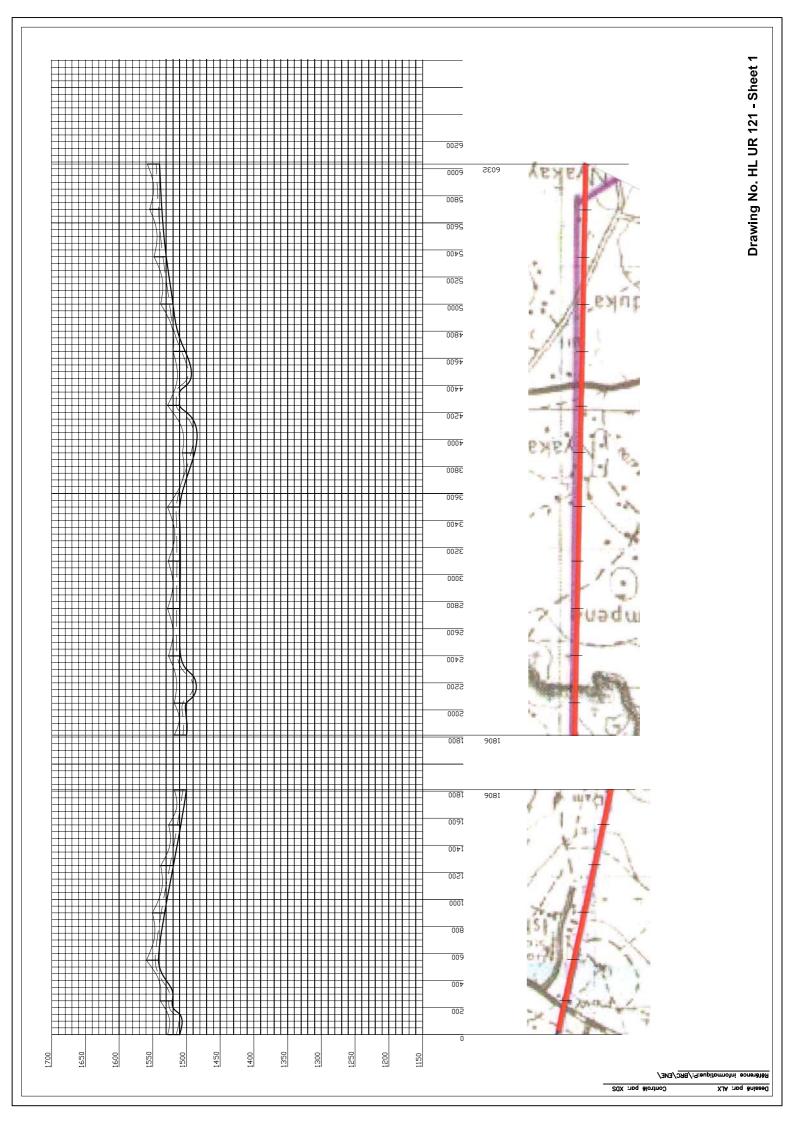

Page 11

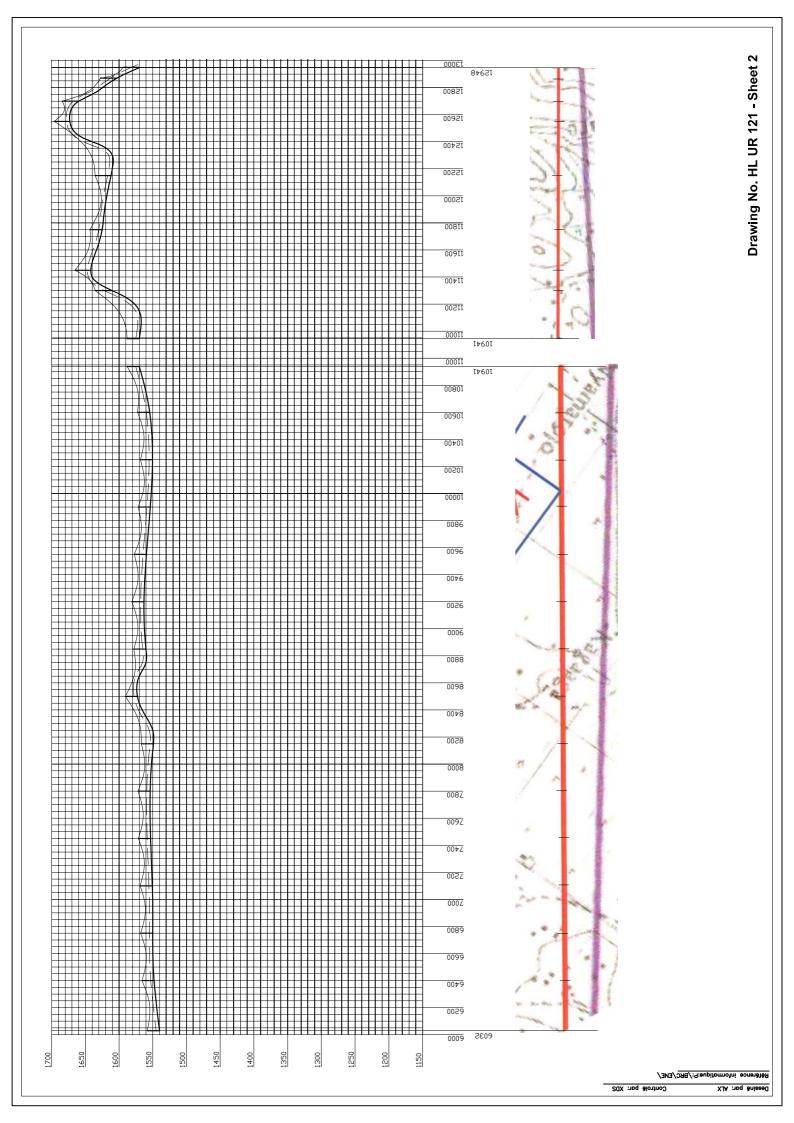


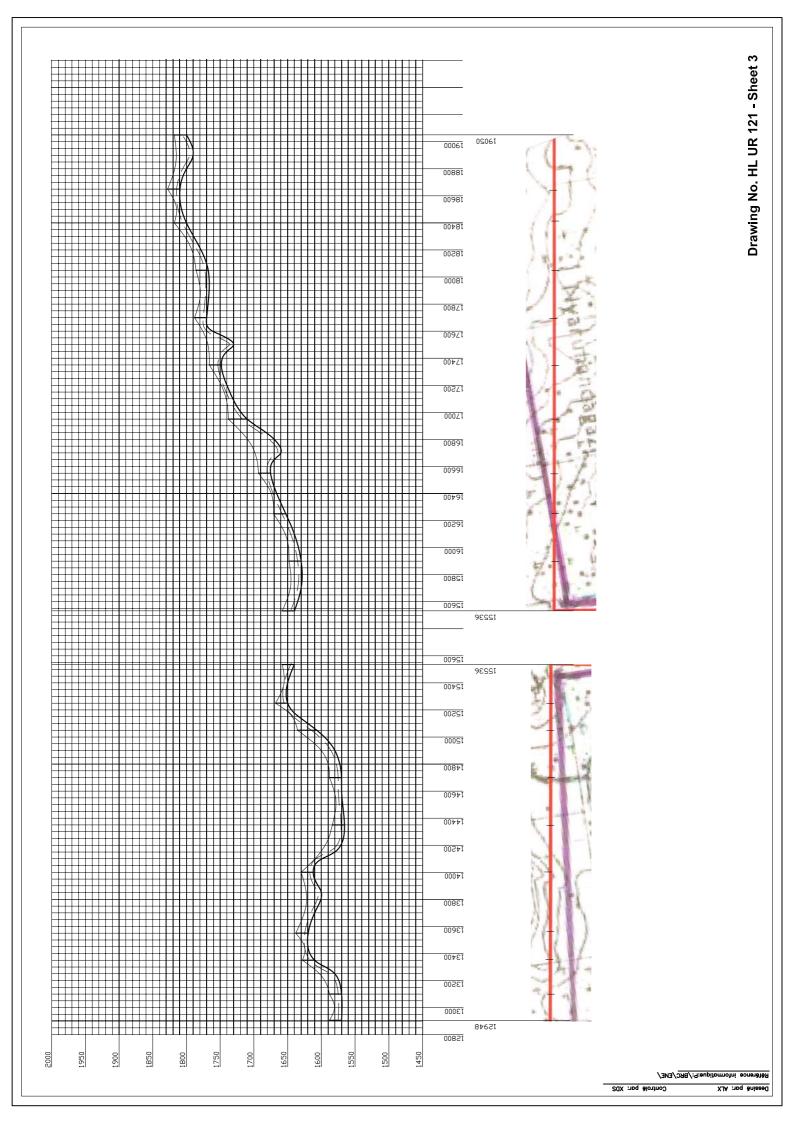


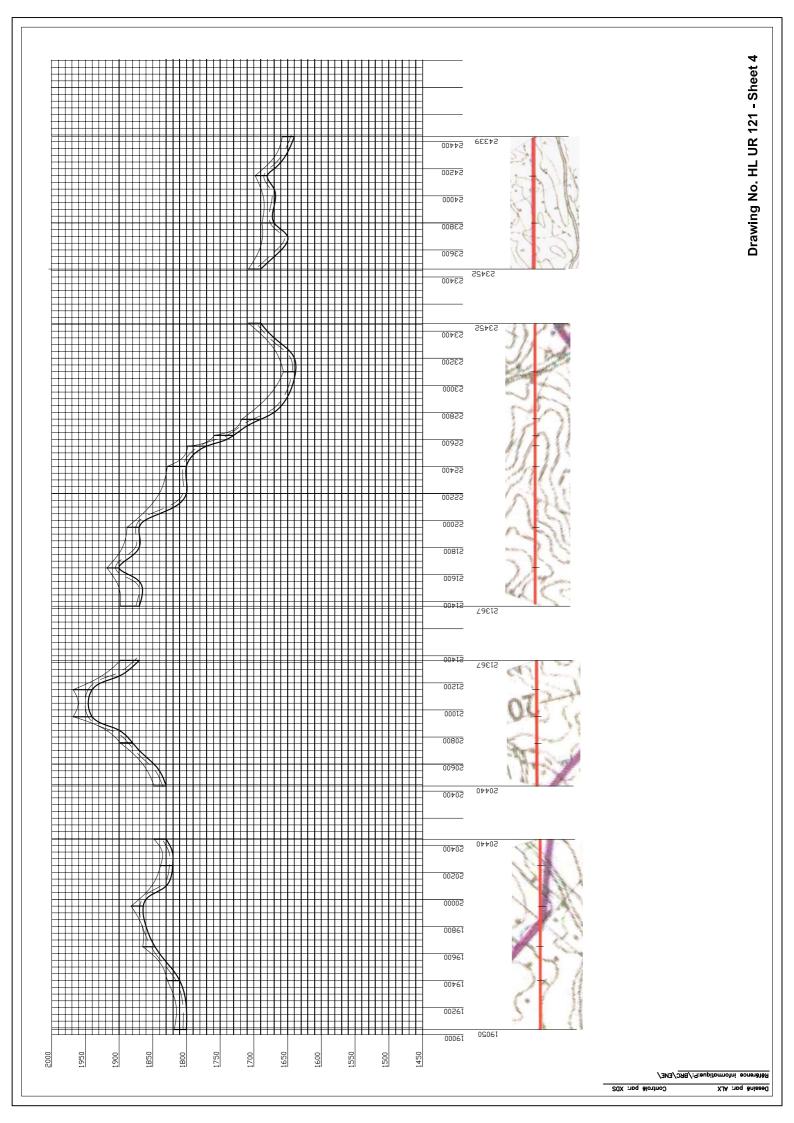


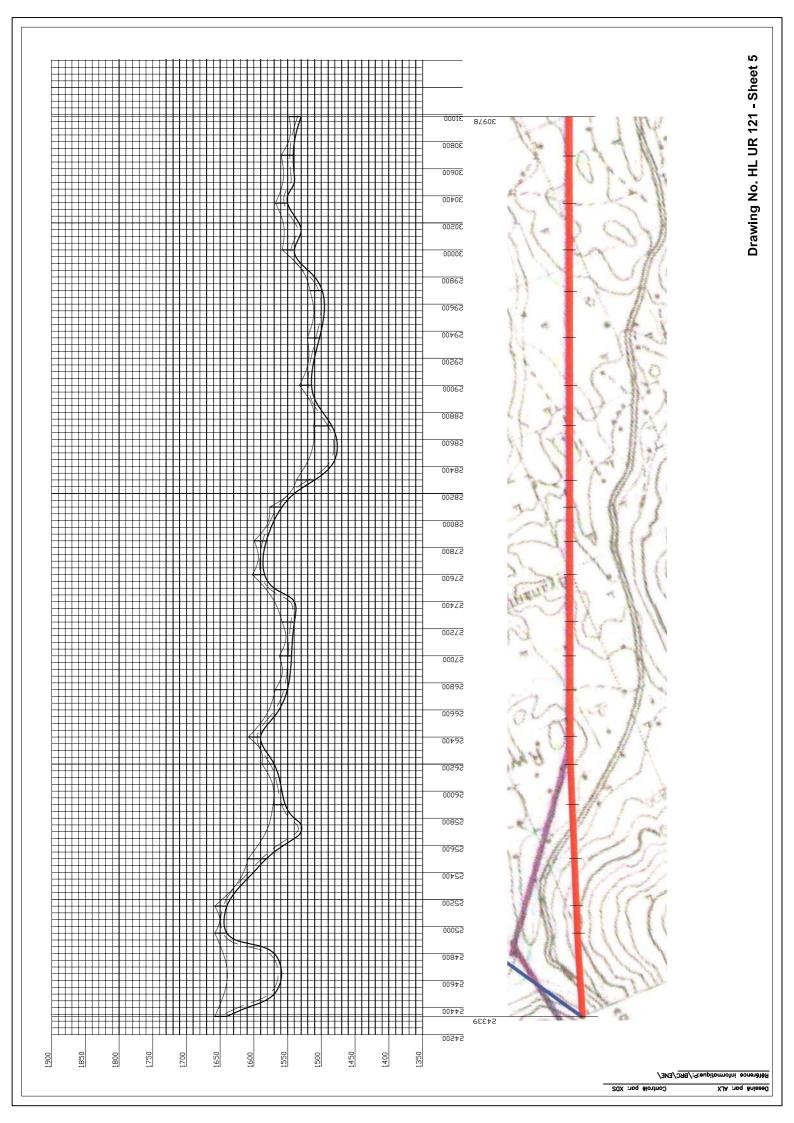


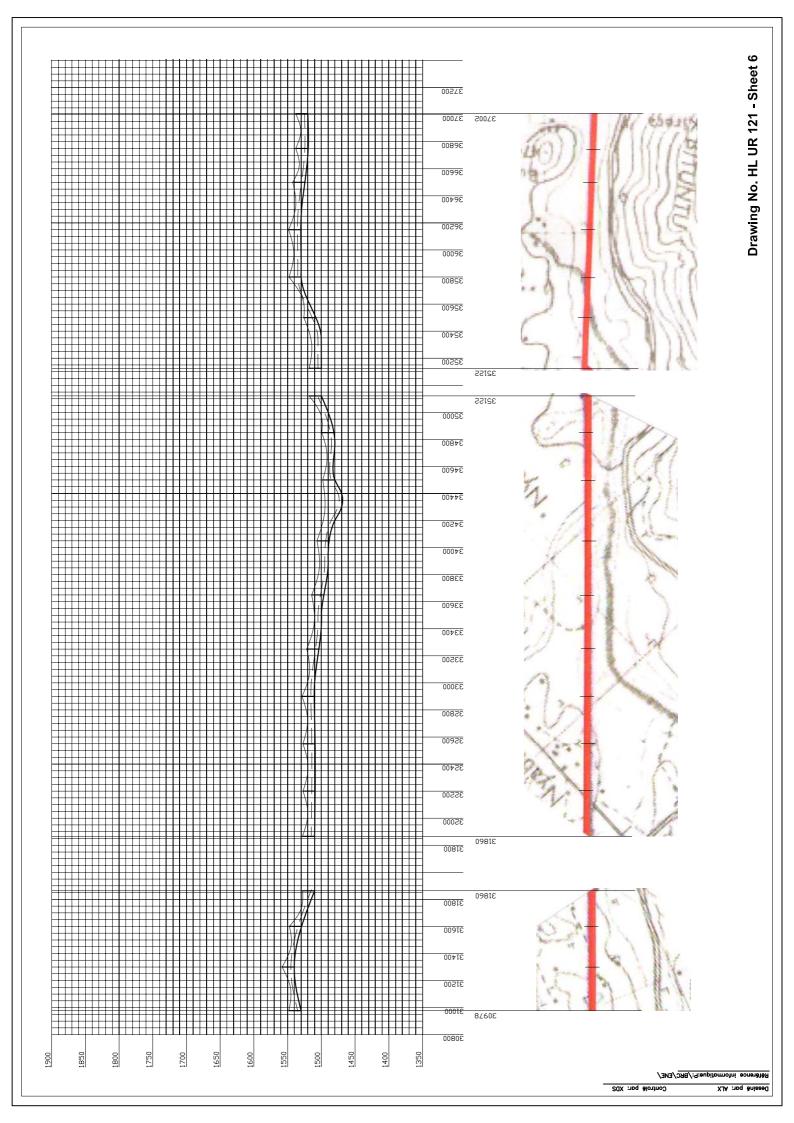

ANNEX E. LONGITUDINAL PROFILES: MBARARA – MIRAMA

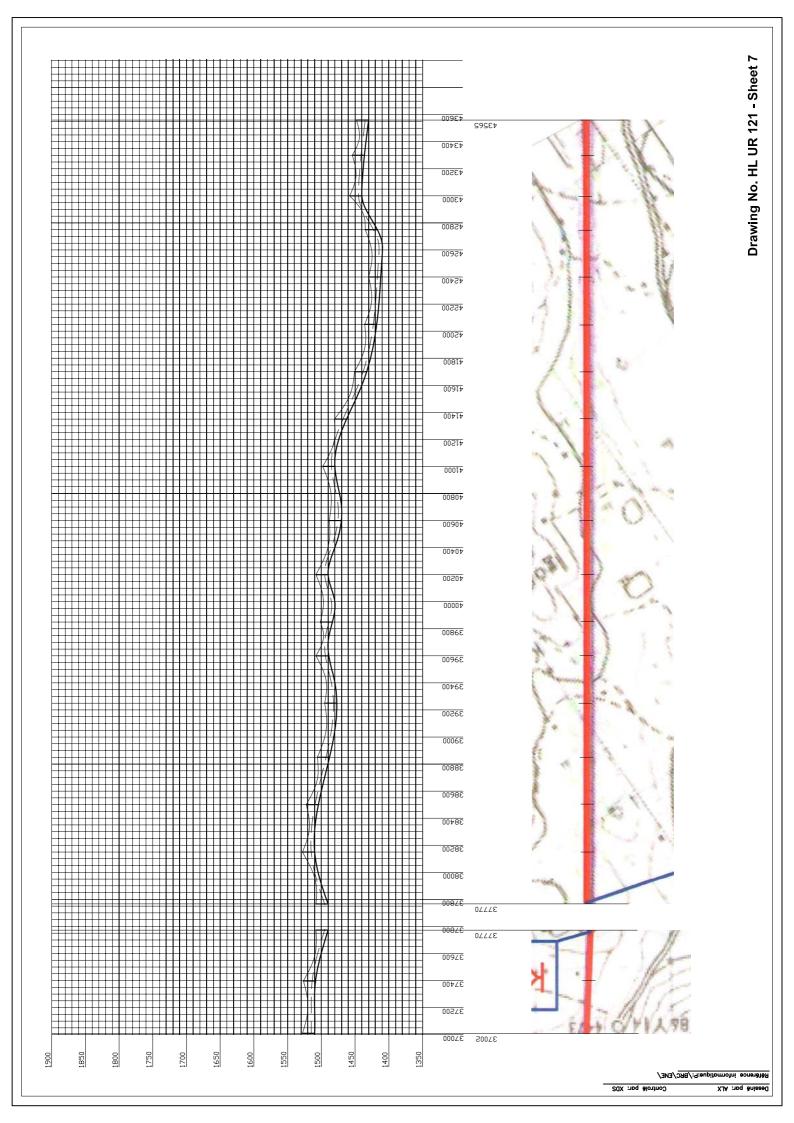

UGANDA - RWANDA INTERCONNECTION: MBARARA NORTH – MIRAMA S/S LIST OF PLAN AND PROFILE SHEETS 1 – 10

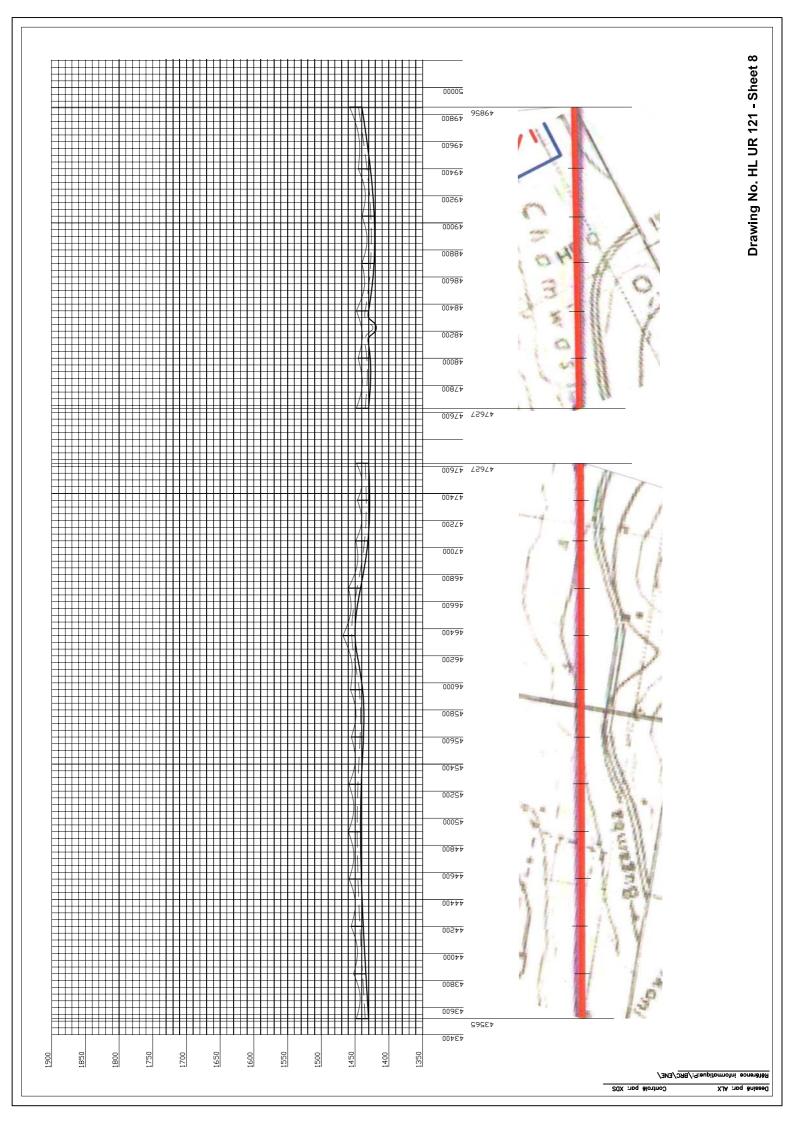

Si										
Quantity of Towers	19	22	19	20	21	18	19	18	14	14
Tower Numbers	1 – 19	19 – 41	41 – 60	60 – 80	80 – 101	101 – 119	119 – 138	138 – 156	156 – 170	170 – 184
Stretch in Metres	0 – 6 032	6 032 – 12 948	12 948 – 19 050	19 050 – 24 339	24 339 – 30 978	30 978 – 37 002	37 002 – 43 565	43 565 – 49 856	49 856 – 54 780	54 780 – 59 514
Sheet No.	~	2	S	4	5	9	7	8	6	10

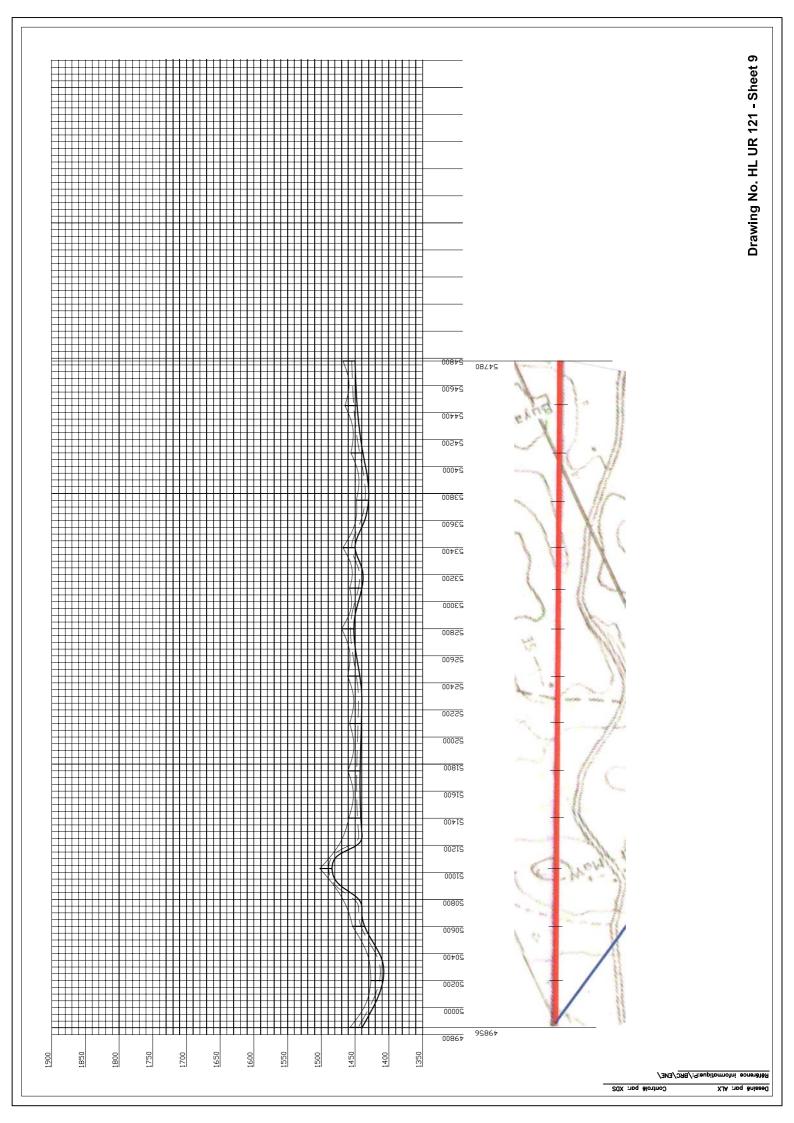

•	NELSAP	PAALEN
	STUDY ON THE INTERCONNECTION THE ELECTRICITY NFTWORKS OF THE NILE	ETUDE D'INTERCONNECTION DES RESEAUX ELECTRIQUES DES PAYS DESI ACS
	EQUATORIAL LAKES COUNTRIES	EQUATORIAUX DU NIL
FEASIBILIT	Y REPORT / RAPPO	FEASIBILITY REPORT / RAPPORT DE FAISABILITE
UGANDA	- RWANDA - IN	UGANDA - RWANDA - INTERCONNECTION
	PLAN AND PROFILE	ROFILE
MBAR ²	MBARARA - MIRAMA: SHEETS 1 - 10	SHEETS 1 - 10
HVELOOS	ORSU	N° H L Ur 121 a
(PERF)	A hydro Québec	Date : November 2, 2007

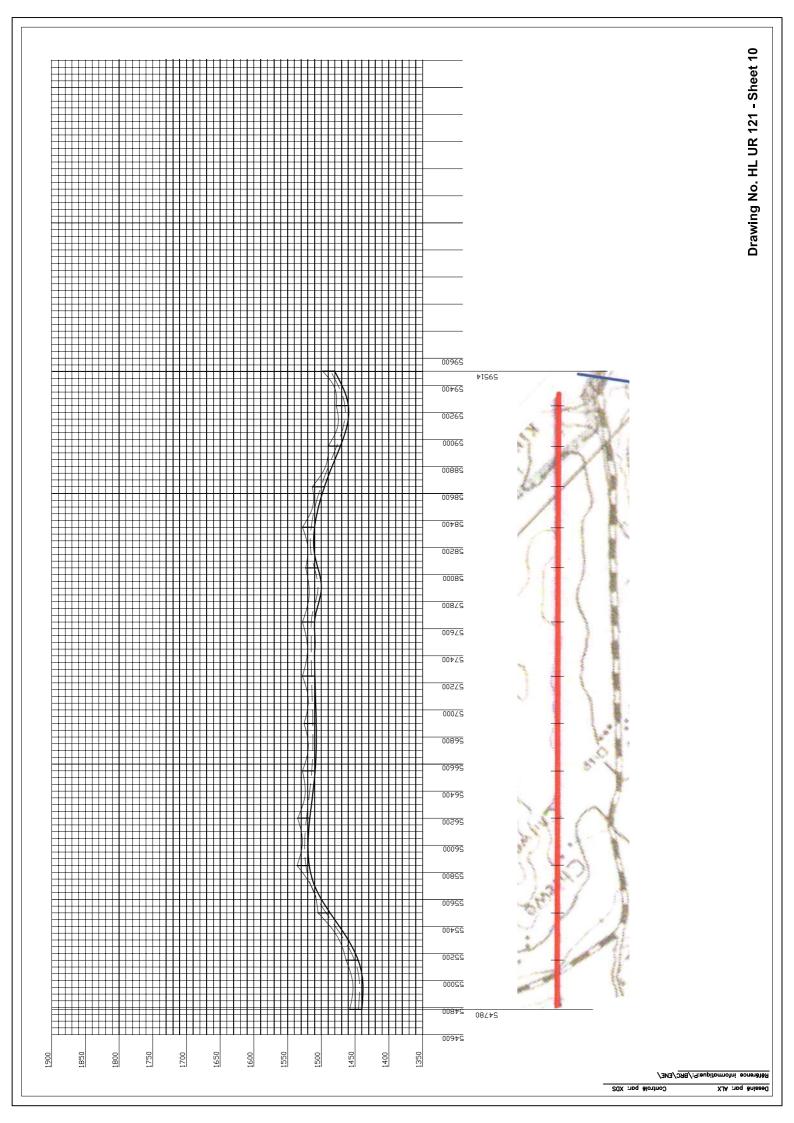

Dessiné par: ALX Controlé par: XDS Référence informatique:P:/BRC/ENE/

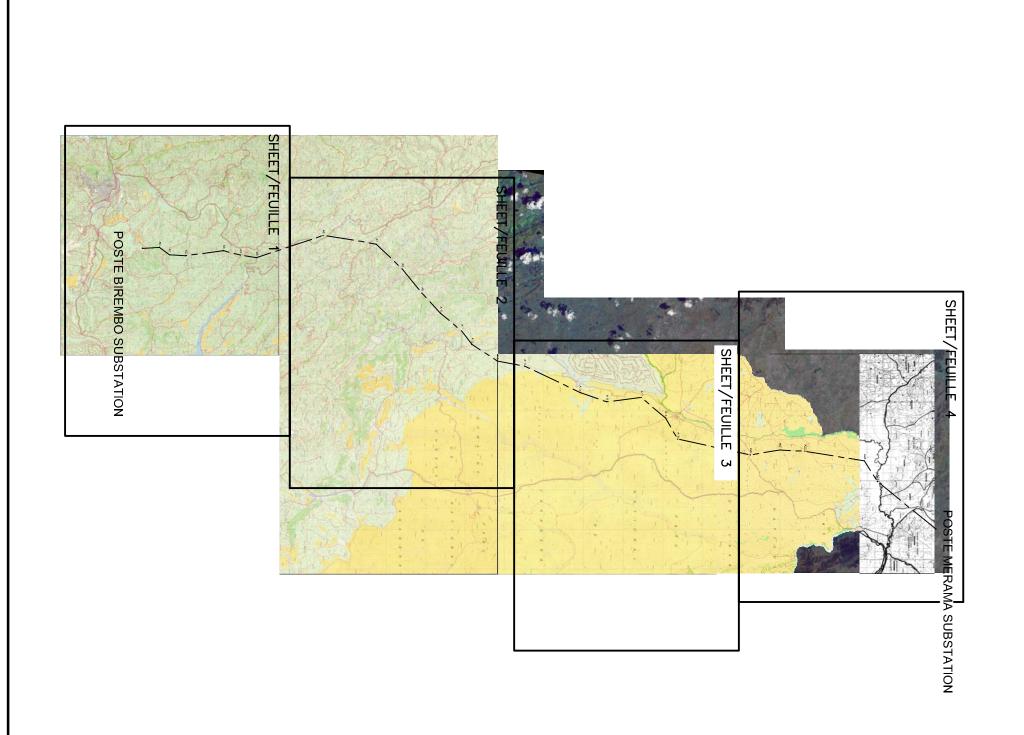






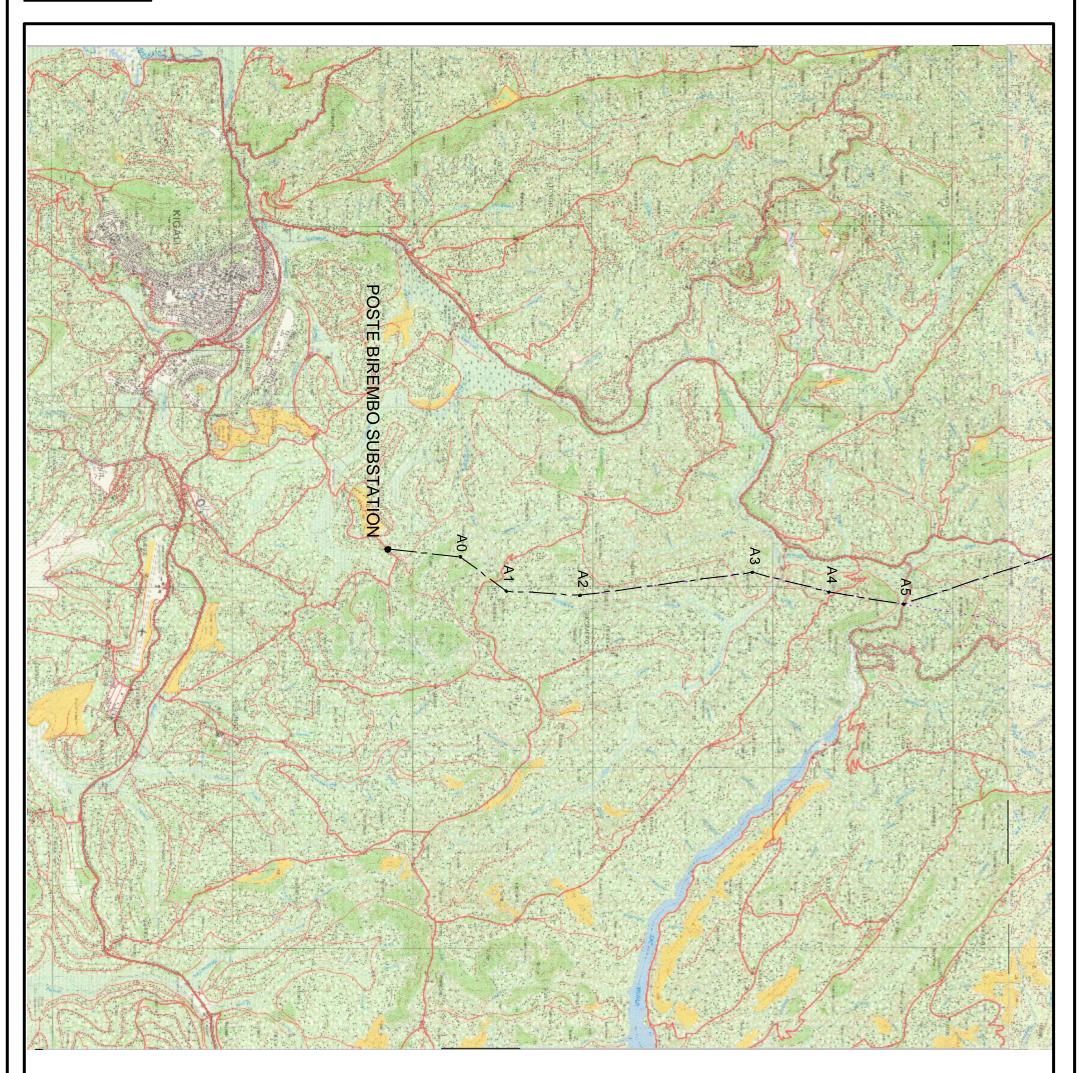




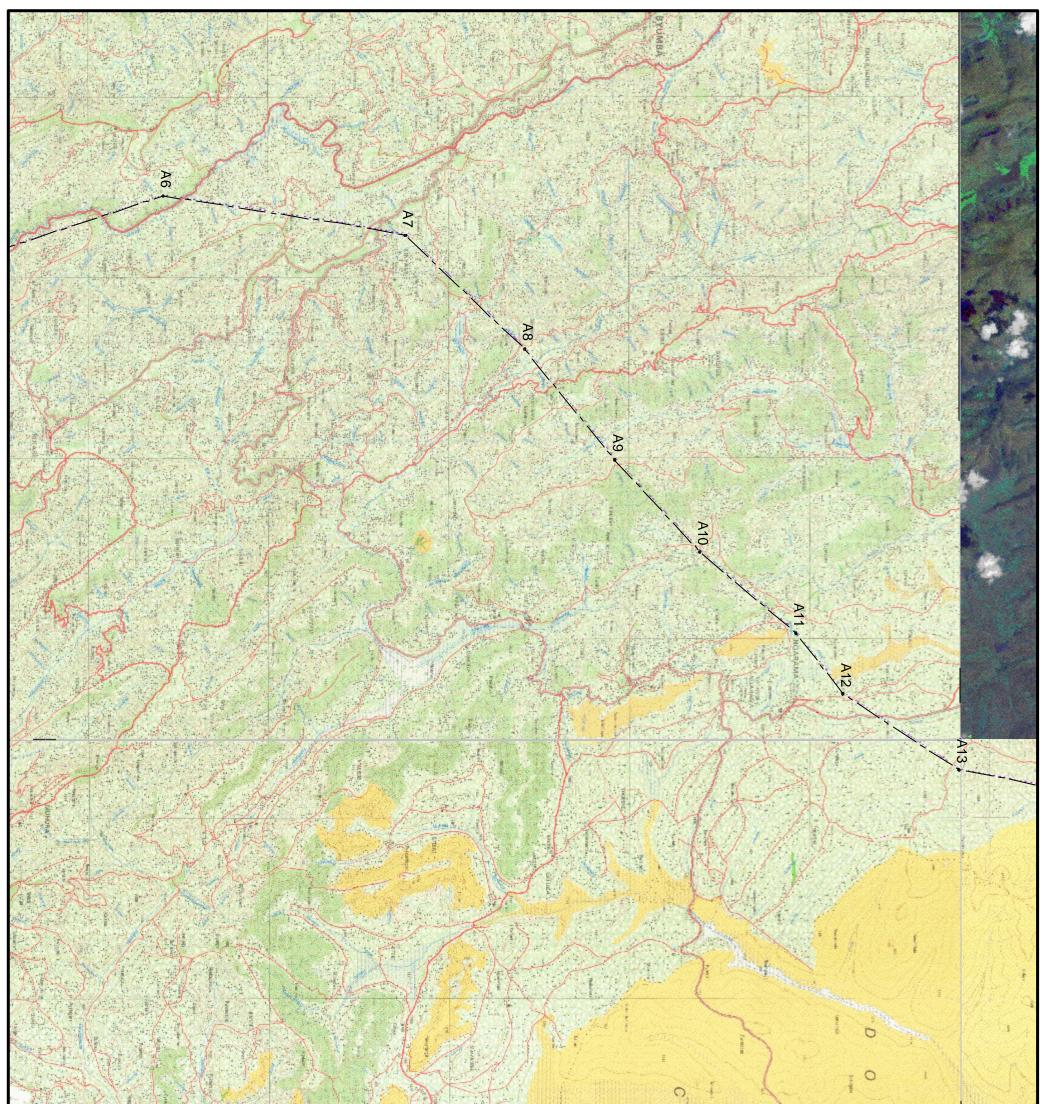


ANNEX F. GENERAL MAP: BIREMBO – MIRAMA

Dessiné par: T. Shalman Controlé par: XDS

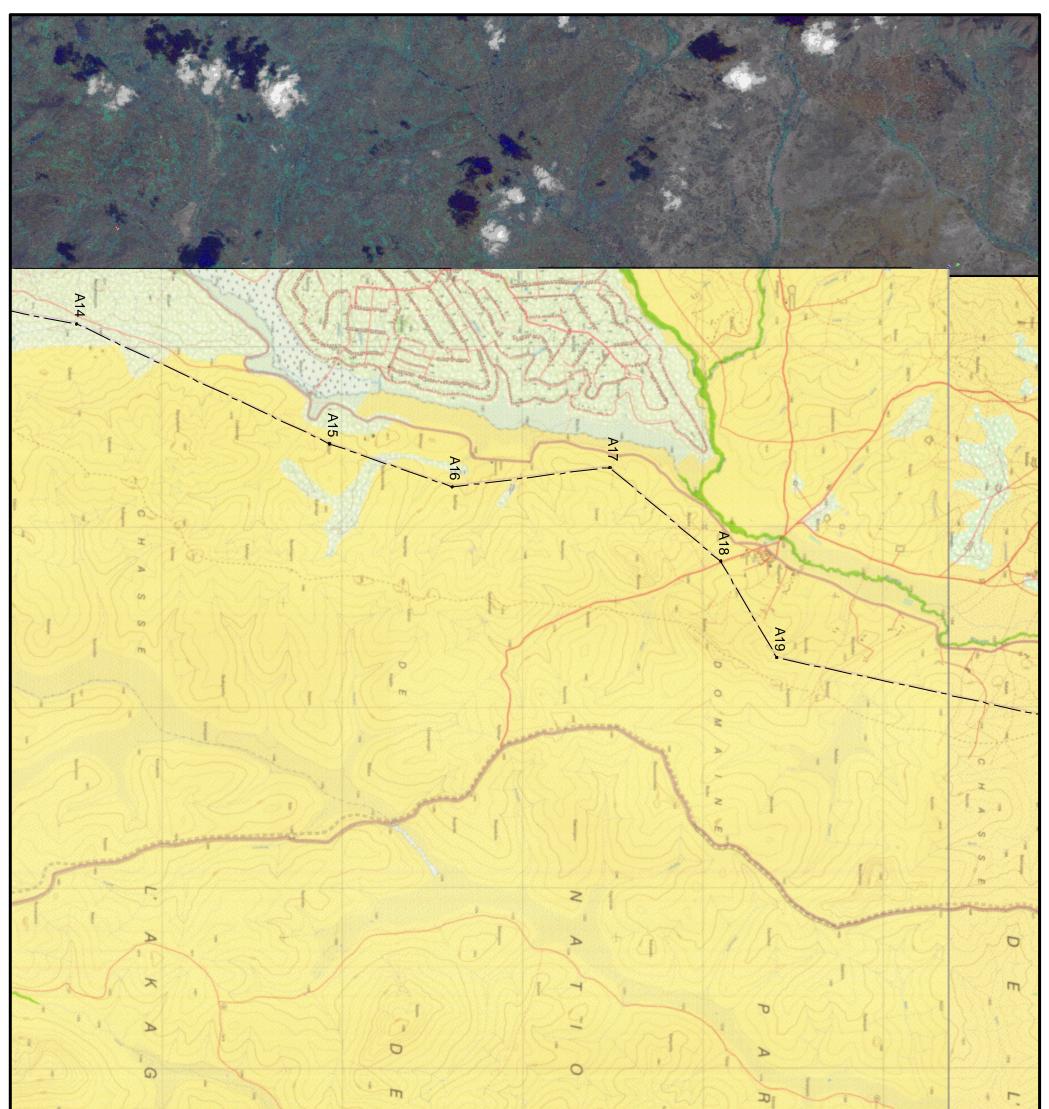

Référence informatique: P:\Secteur_36\P36_3020\Dao\Dessins pour rapport\Interconnexion Ouganda Rwanda\R L UR 001 0.dwg

Hitab		Society			INTERCO	FEASIBILI	STUDY O
	Hydro Québec	RESUL	PLAN CLÉ	TRACÉ	DNNEXION OUG	TY REPORT / RAPP	NELSAP STUDY ON THE INTERCONNECTION THE ELECTROITY NETWORKS OF THE NILE EQUATORIAL LAKES COUNTRIES
	Date: June / Juin 2007	N° R L UR 001 0	ĪŢ		INTERCONNEXION OUGANDA-RWANDA	FEASIBILITY REPORT / RAPPORT DE FAISABILITE	PAALEN ETUDE D'INTERCONNECTION DES RESEAUX ELECTRIQUES DES PARYS DES LACS EQUATORIAUX DU NL


ANNEX G. MAP SHEETS: BIREMBO – MIRAMA

Référence informatique: P:\Secteur_36\P36_302D\Dao\Dessins pour rapport\Interconnexion Ouganda Rwanda\R L UR 002 D.dwg

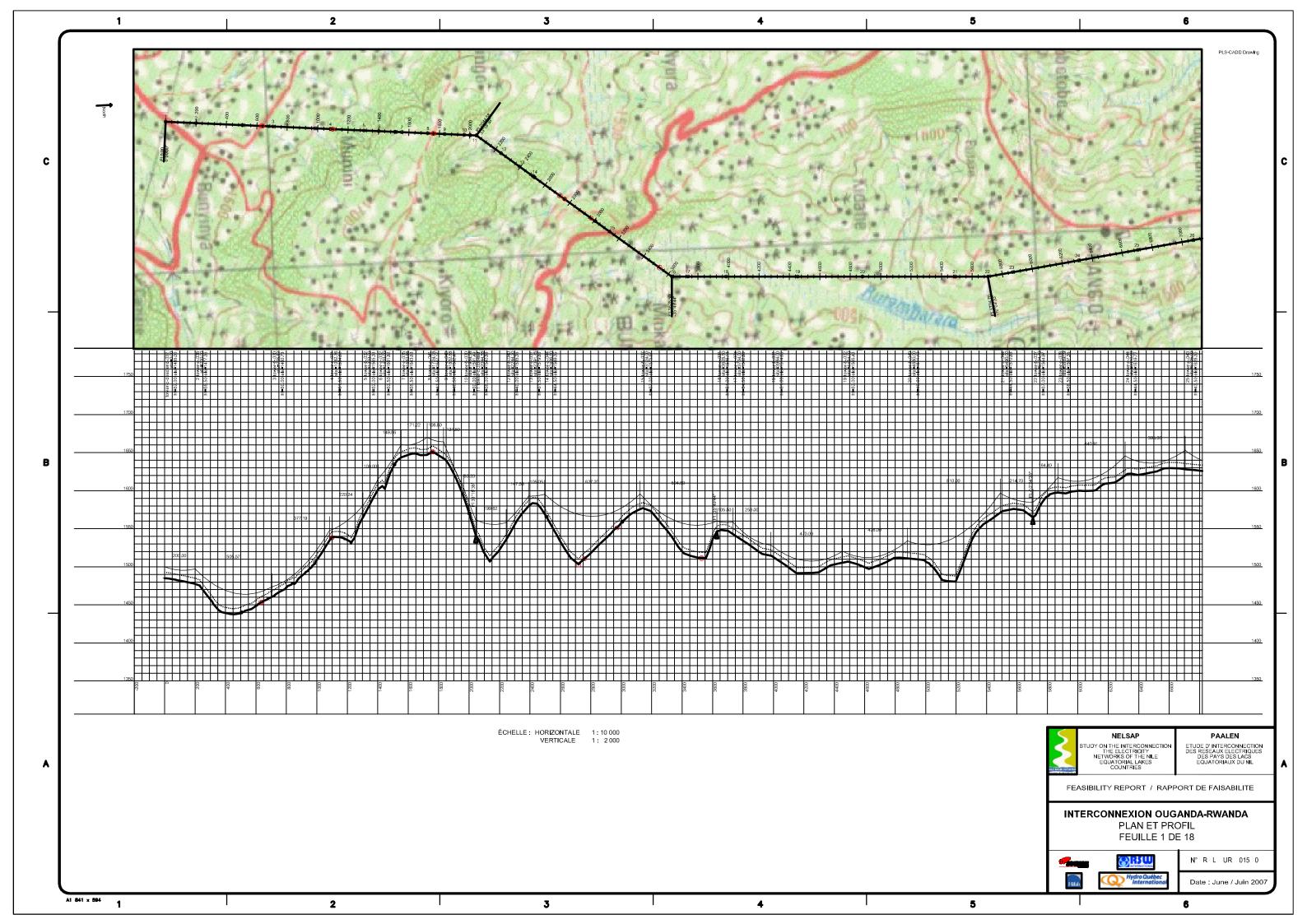
	(11) m	
SIBILITY REPORT / RAPPORT DE FAISABLITÉ ERCONNEXION OUGANDA-RWANDA TRACÉ FEUILLE 1 DE 4 SILLUN N° R L UR 002 0 N° R L UR 002 0 Date : June / Juin 2007	Image: Constraint of the second constraint of the seco	PRINCIPAL ANGLE / ANGLE PRINCIPAL

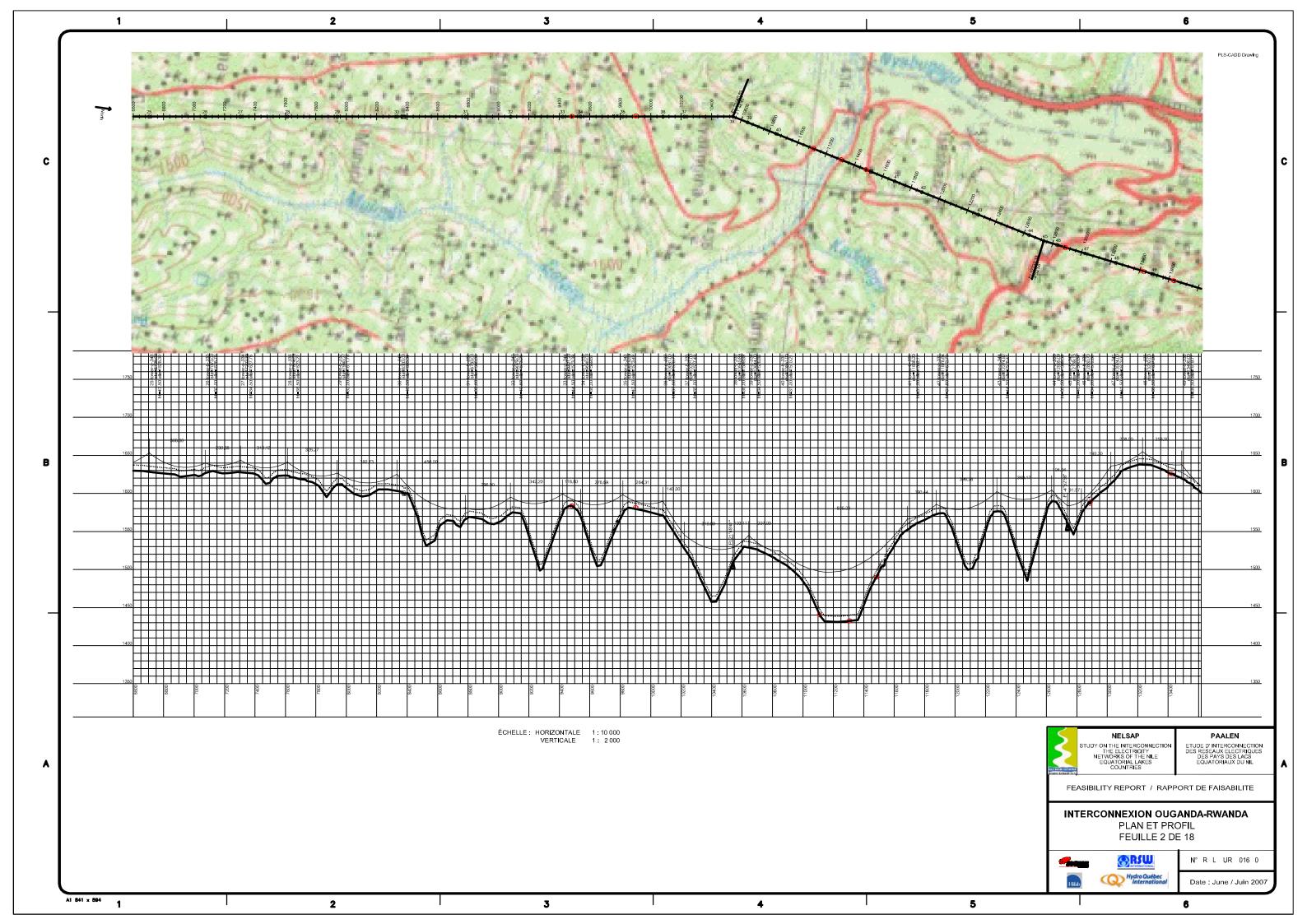

Référence informatique: P:\5ecteur_36\P36_302D\Dao\Dessins pour rapport\Interconnexion Ouganda Rwanda\R L UR 003 D.dwg

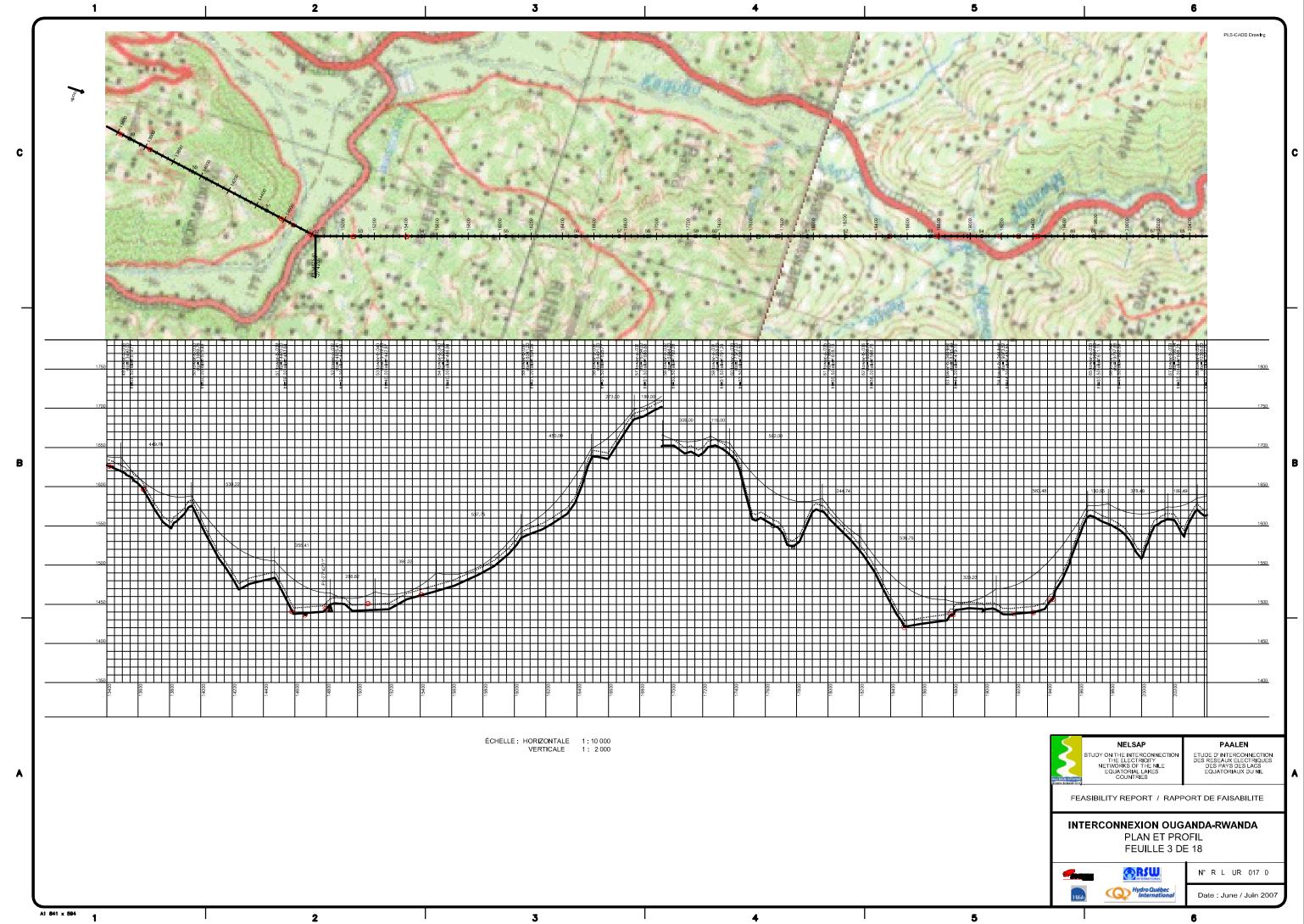
	INTERCO		SCALE / ECHELLE 9		A11	
Mrthe Outleast Open Finternablenart Date : Ju	INTERCONNEXION OUGANDA-RWANDA TRACÉ FEUILLE 2 DE 4	NELSAP PAALEN STUDY ON THE INTERCONNECTION ETUDE D'INTERCONNECTION THE ELECTRICITY DES PARS DES LACS NETWORKS OF THE NILE DES PARS DES LACS EQUATORIAL LAKES EQUATORIAL LAKES COUNTRIES EQUATORIAL THE	N - W W		PRINCIPAL ANGLE / ANGLE	
Date:June/Juin 2007	RWANDA	PAALEN ETUDE D'INTERCONNECTION DES RESAUX ELECTRIQUES DES PAYS DES LACS EQUATORIAUX DU NIL ATT DE FAISABLITÉ	_ ω 3		LE PRINCIPAL	

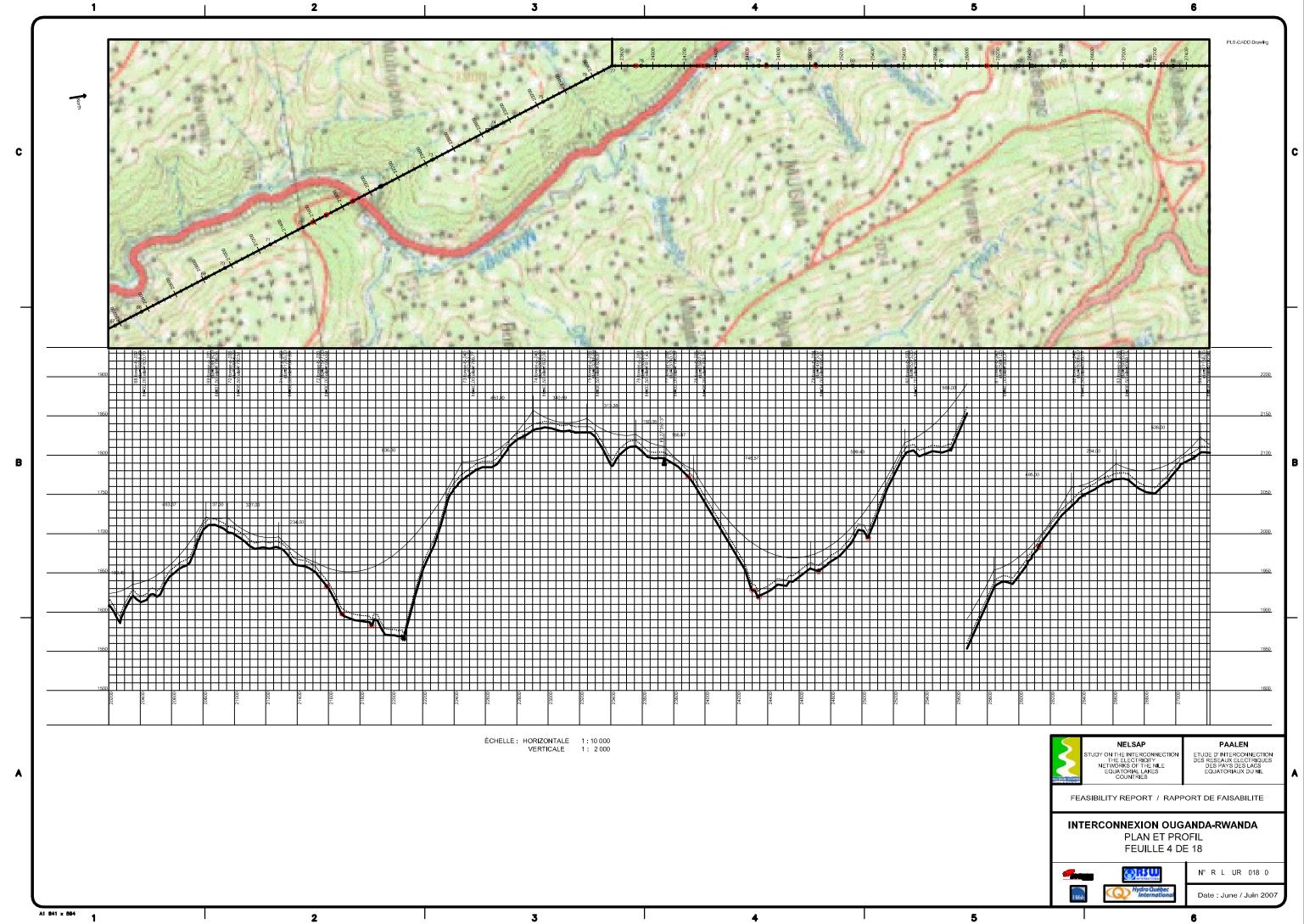

Dessiné par: T. Shaiman Controlé par: XDS

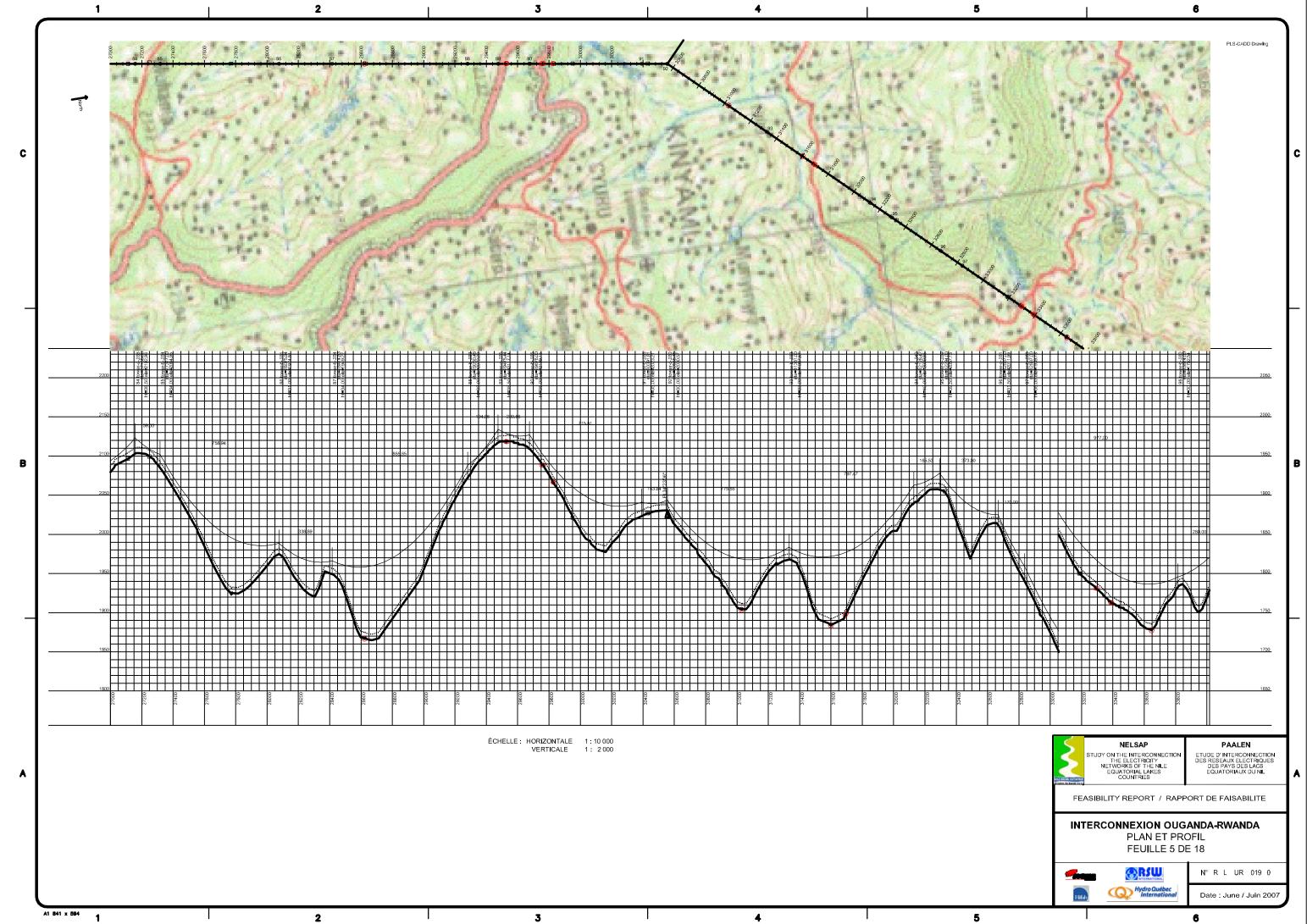
Référence informatique: P:\Secteur_36\P36_302D\Dao\Dessins pour rapport\Interconnexion Ouganda Rwanda\R L UR 004 D.dwg


	INTERCO				~ .	A1	<
Hydro Cluther International	DNNEXION OUG TRACÉ FEUILLE 31					PRINCIPAL ANGLE	LEGEND / LÉ
N ⁺ R L UR 004 Date : June / Juin 2007	DE 4	TYON TYY DESRESEAUX ELECTRIQUES ES ES EQUATORIAUX DU NIL				E / ANGLE PRINCIPAL	ÉGENDE
004 0 2007	DA	ACS NIL				CIPAL	


Référence informatique: P:\Secteur_36\P36_302D\Dao\Dessins pour rapport\Interconnexion Ouganda Rwanda\R L UR 005 D.dwg




		SCALE / ECHELLE	A.
ONNEXION OUG TRACÉ FEUILLE 4 C	VELSAP E: INTERCONNECTIO HE ELEGERRICITY KKS OF THE NILE DUATORIALLAKES COUNTRIES REPORT / FU	 - N	PRINCIPAL ANGLE
UGANDA-RWANDA CÉ 4 DE 4 N" R L UR 005 0 Date : June / Juin 2007	N ETUDE D'INTERCONNECTION DES RESEAUX ELECTRIQUES DES PAYS DES LACS EQUATORIAUX DU NIL PPORT DE FAISABLITÉ	- ω - ► 3	ANGLE / ANGLE PRINCIPAL


ANNEX H. LONGITUDINAL PROFILES: BIREMBO – MIRAMA

