

Nile Basin Initiative Eastern Nile Subsidiary Action Program Eastern Nile Technical Regional Office

Nile Basin Initiative Eastern Nile Subsidiary Action Program Eastern Nile Technical Regional Office

The Eastern Nile Power Trade Program Study is fully funded by the African Development Bank with the general **objective of promoting regional power trade between Egypt, Ethiopia and Sudan** through creation of an enabling environment, coordinated regional investment planning of power generation and transmission interconnection projects.

The Eastern Nile Power Trade Program Study is divided in 2 phases:

- Phase 1: **Cooperative Regional Assessment of Power Trade Opportunities** between Ethiopia, Egypt and Sudan
- Phase 2: **Feasibility Study of the Power Interconnection** between Egypt, Ethiopia and Sudan to export, from Ethiopia, 2 000 MW to Egypt and 1 200 MW to Sudan.

In phase 2, two implementation scenarios have been analyzed :

- Commissioning a 700 MW capacity interconnection Ethiopia-Sudan in 2015 then commissioning the whole Egypt-Ethiopia-Sudan interconnection after Mandaya commissioned in 2020 (with anticipation)
- Commissioning the whole interconnection in 2020 (without anticipation)

The **Phase 1** concluded on the **economic profitability** of the Egypt-Ethiopia-Sudan power interconnection. The project is characterized by good business indicators, as a short payback period and a high benefit to cost ratio under a wide range of hypothesis.

The **Phase 2** concludes on **technical, environmental and financial feasibility**, according the development of a strong institutional framework allowing the building and the operation of this regional interconnection in a progressive way.

Key Contributors

Power Studies : E. Varret, R. Leport, L. Magliano, O. Hurtiger

Line Routing : X. Daudey, X. Campagne

Technical Specifications :

- OHL : X. Daudey
- HVDC : L. Tullus
- AC Stations : L. Popiel
- Control Systems : Ph. Espinasse
- Training : Ph. Espinasse

Institutional Analysis : J. Roux

Financial Analysis :

- M. Muller, NODALIS

Environmental and Social Impact

- Analysis : - SCOTT WILSON Ltd, England
- E. Mwelwa, ZESCO

Local Subconsultants for Line Routing and ESIA :

- Egypt : EPS, SPEEDOTRANS
- Ethiopia : TROPICS
- Sudan : YAM CdC

Philippe Lebreton, EDF-CIST Project Manager

Economic results

Investment costs are estimated about **1 860 MSD**₂₀₀₆, O&M costs are about **18 MSD**₂₀₀₆ per year and revamping costs about **230 MSD**₂₀₀₆ Social mitigation costs are about **16 MSD**₂₀₀₆.

Net present value (NPV) of the project is positive for both demand scenarios: **1 810 MSD**₂₀₀₆ for medium Ethiopian demand and **2 210 MSD**₂₀₀₆ for low Ethiopian demand, 10% discount rate, medium fuel price projection. About 160 MUD to 320 MUSD must be added to NPVs from CO₂ savings, if this project is eligible to Clean Development Mechanism.

The **payback period** is reached after **8 full years** of operation for low Ethiopian demand and **7 full years** for medium Ethiopian demand.

The Benefit to Cost Ratio (**BCR**) of the both scenarios are **above 3** for a 10% discount rate, and remains superior to 2 for 8% and 12% discount rates.

Both scenarios have high Economic Internal Rate of Return (EIRR), respectively 18% and 17%.

The **sensitivity analysis** executed for a low Ethiopian demand including updated fuel prices projection, shows that the variant with anticipation is even more profitable, with a BCR of 4.9. High fuel prices assumption enhances the interest of the Eastern Nile Regional Power Interconnection project, with a BCR as high as 8.1.

Financial results

With anticipation, assuming a quinquennial tariff mode, a public financing and corporate income tax exoneration, the optimal transmission tariff, ensuring its viability, is USD_{2006} 7.6 / MWh excluding tax (equivalent to USD_{2010} 10.6 / MWh)

The variant **without anticipation** is less attractive, requiring a 13% higher average transmission tariff. Under a technical scenario without anticipation, the tariff is USD_{2006} 8.6 / MWh excluding tax (equivalent to USD_{2010} 12.0 / MWh).

Transmission tariff is highly sensitive to the proportion of private financing in the financing plan. The average tariff would double under a private financing scheme USD_{2006} 15.2 /MWh excluding tax (equivalent to USD_{2010} 21.2 / MWh) compared with the base public financing scheme. The financing strategy will therefore have to focus on raising the large amount of public resources, marketing the project to development aid partners in order to negotiate optimal concessional terms for long-term loans.

Regarding hydrologic risk mitigation, it is recommended to set tariffs for the first 10 years at a level around 5% higher than the equilibrium for the base hydrology scenario, at around USD₂₀₀₆ 8.0 / MWh (equivalent to USD₂₀₁₀11.1 / MWh).

Regarding sensitivity on financing plan, the financial and tariff modeling shows that the financing strategy will have to take into account both long-term optimization and the capacity for the stakeholders' states to raise fund from public budget.

Regarding loan negotiation with lenders, the strategy will also have to conciliate long-term optimization and the maximum admissible transmission tariff during the debt service period.

EASTERN NILE POWER TRADE PROGRAM STUDY

EXECUTIVE SUMMARY

The introduction of a 30% corporate income tax has a limited impact under public financing (+ 2% on average tariffs) but a stronger impact under a private financing (+25%) as profit have to be generated, and therefore taxed, to pay out shareholders. Nevertheless, the decision to exempt the Project Company from corporate income tax or not shall depend of an economic "arbitrage" between the additional cost of electricity transmission and the revenue generated by this taxation.

Institutional Recommendations

A global institutional scheme emphasizing the **necessity of a collaborative approach**, mixing multilateral agreements and multilateral institutions, is proposed so as to finance, build, own and operate the Egypt-Sudan-Ethiopian power interconnection.

A suitable model turns out to be a scheme carried out by transnational entity distinct from national Transmission System Operators.

A convention binding the three EN Countries is proposed to set-up a project structure, in charge of implementing a **Project Company** and of running the **financing project**. The project structure will refine finance, build and operate schemes, in the objective to minimize risks and therefore, costs.

In addition, a multinational **Interconnection Regulator** shall guarantee a continuous control of the development, scrutinizing the compliance with future transparent and non-discriminatory rules.

According a Convention signed in 2009, the financing closure could happen by 2011, making the challenging anticipation scenario possible.

Social and Environmental impacts

This environmental and social impact assessment of the project-affected areas in the three EN Countries reveals no significant issue because the line route has been designed to avoid populated areas. It has also been optimized to avoid sensitive zones such historical & archeological sites, wildlife reserves, large crop areas, existing overhead line crossing.

A **16 MUSD**₂₀₀₆ environmental and social mitigation measure plan has been estimated to mainly compensate crop and fruit trees in Ethiopia and Sudan and to enforce community gains in Egypt. This budget represents less than **1%** of the total project budget.

Despite this small ratio, this **Resettlement Action Plan is a key point for the implementation** of the interconnection. The project company shall take a special care and monitor closely that Contractor to fulfill ESIA recommendations and assignments.

Technical Feasibility

EN countries have selected an interconnection scheme consisting in:

- One AC 500 kV link including two 544 km double circuit lines between a 500/400 kV substation at Mandaya in Ethiopia and the AC 500 kV station at Kosti in Sudan
- One DC +/-600 kV link including a 1 665 km bipolar DC line between Kosti and Nag Hammadi in Egypt, a 2 150 MW AC/DC converter station located at each end of the link. One 500 MVAr and one 300 MVAr static var compensators are installed at Kosti and Nag Hammadi.

This interconnection operates in parallel with the Gonder (Ethiopia) and Gedaref (Sudan) 220 kV to be commissioned in the coming year 2009.

Power Studies

To assess the feasibility of this interconnection, different situations were analyzed :

- Peak load situation in 2015
- Peak and intermediate load situation in 2020/2021
- Peak load situation in 2025/2026
- Peak load situation in 2029/2030

The study has demonstrated that **it is possible** to export 3 200 MW from Ethiopia, delivering 1200 MW to Sudan and 2000 MW to Egypt.

The operation of whole interconnected systems is acceptable.

DC interconnection optimization study: An economical optimization study for the DC interconnection have lead to select a DC 600 kV scheme.

Operation in parallel of the 220 and 500 kV interconnections: It is advantageous to operate in parallel the 220 and the 500 kV interconnections, for security and economical reasons, with a 250 MVA phase-shift transformer.

DC +/-600 kV, AC 220 kV and 500 kV interconnections: The tripping of one of the poles of the DC interconnection is acceptable. The tripping or a short-circuit on the 220 kV interconnection has a limited impact on the system behavior. In case of short circuit on 500 kV interconnection, for stability reasons the export power to Egypt has been reduced to half. The increase of the short-circuit power and the commissioning of Border lift up this constraint.

Egyptian system : Egyptian system behavior is satisfying with a 300 MVA SVC in Nag Hammadi. The system face safely the tripping of Egypt main steam unit.

Ethiopian system: Ethiopian system behavior is satisfying. In 2020, the Mandaya and Addis Ababa 400 kV backbone is heavily loaded, fulfilling N-1 criteria. The commissioning of Geba 1&2 in 2021 and specifically Border in 2030 will release load constraints. The Ethiopia - Sudan system faces safely the tripping of Ethiopia main unit.

Sudanese system: The behavior of the Sudanese system is satisfying in case of tripping and short-circuit on the neighboring circuits of Kosti. The Ethiopia - Sudan system face safely the tripping of Sudan main unit.

Anticipation of the AC 500 kV interconnection in 2015: The anticipation of Mandaya-Kosti AC interconnection would enable to export the Ethiopian hydro surplus before 2020, and to increase the power export from 200 MW (with the 220 kV AC interconnection) to 700 MW. The energizing of the interconnection is an issue due to harmonic transient over-voltage risks, generated by 400/500 kV Mandaya transformers. This potential issue needs to be studied in a detailed way with the final known characteristics of the network. Several technical and operational alternatives were analyzed, and the black-start with low voltage energizing from a gas turbine plant at Kosti appeared to be the best solution.

Line Routing

AC circuits between Mandaya and Kosti substation face some difficult access and relief characterized by hilly area and flooded zone near Nile.

Kosti substation localization will be decided according with other 500 kV Sudanese project lines to be committed in 2030.

Corridor of \pm 600 kV DC Line between Kosti and North Omdurman is located on the West bank of the White Nile River. This line route skirts urban area between Rabak/Kosti-Khartoum, Khartoum agglomeration, future International Khartoum Airport and existing 220 kV lines.

After field investigations, the proposed areas, for \pm 600 kV DC Line connection in Sudan and Egypt, are located in free of obstructions places, as highly populated areas, power lines crossing, private agricultural areas and cemeteries.

No major constraint for AC and DC line corridors has been identified after site visits.

Phasing

Arrangement works are divided in ten lots: five for AC and DC overhead lines construction, four for HVDC and SVC substations and one for control center and appropriate supervision.

This **challenging** phasing considers the time for study validation and works construction but does not take into account the bidding processes for construction and consulting services.

No cutting-edge technologies have been chosen. **Well proven technologies** have been selected for the most part of technical equipments (cables, towers, power stations subsystems, controls systems, transformers, ..). Turn key buys are recommended, one for the both HVDC stations and one for SVC stations.

Operation and Maintenance

A dedicated control center, designed to not depend on the location and operated in close cooperation but distinctly from national transmission operators, handles metering, supervision and controls with local substations and telecommunication links.

Training is a significant part of the development of this project and covers numerous technical and management fields.

Eastern Nile Power Trade Program Study Volume Table of Contents

Electrical Power Systems Engineering Company

Nile Basin Initiative Eastern Nile Subsidiary Action Program Eastern Nile Technical Regional Office

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2015 Appendix Stability Study

TABLE OF CONTENTS

1	Transie	nt stability analysis hypothesis	6
2	2015 pe	ak load situation	8
	2.1 Sh	ort-circuit at Kosti on one of the 2 Kosti - Mandaya circuits	8
	2.1.1	Generators frequency variation	8
	2.1.2	Power flow variation on the interconnection	9
	2.1.3	Voltage variation on the 400/500 kV interconnection	10
	2.2 Sh	ort-circuit at Mandaya on on one of the 2 Mandaya - Kosti circuits	11
	2.2.1	Generators frequency variation	11
	2.2.2	Power flow variation on the interconnection	12
	2.2.3	Voltage variation on the 400 and 500 kV	13
	2.3 Sh	ort-circuit on one of the four 400/500 kV transformers at Mandaya	14
	2.3.1	Generators frequency variation	14
	2.3.2	Power flow variation on the interconnection and on Mandaya 500/400 kV transformers	15
	2.3.3	Voltage variation on the 500 kV	16
	2.4 Sh	ort-circuit at Gedaref, on the 220 kV phase-shift transformer	17
	2.4.1	Generators frequency variation	17
	2.4.2	Power flow variation on ENTRO interconnection	18
	2.4.3	voltage variation	19
	2.5 Sh	ort-circuit at Mandaya on one of the 2 circuits Mandaya - Ghimbi	20
	2.5.1	Generators frequency variation	20
	2.5.2	Power flow variation on the interconnection and on Mandaya - Ghimbi	21
	2.5.3	Voltage variation on the 400 and 500 kV	22
	2.6 Sh	ort-circuit at Ghedo on one of the 2 circuits Ghimbi - Ghedo	23
	2.6.1	Generators frequency variation	23
	2.6.2	Power flow variation on the interconnection and on Ghedo - Ghimbi	24
	2.6.3	Voltage variation on the 400 and 500 kV	25
	2.7 Sh	ort-circuit at Sebeta on one of the 2 circuits Sebeta - Ghedo	26
	2.7.1	Generators frequency variation	26
	2.7.2	Power flow variation on the interconnection and on Sebeta - Ghedo	27
	2.7.3	Voltage variation on the 400 and 500 kV	28
	2.8 Sh	ort-circuit at Sebeta on the 400 kV Sebeta - Kaliti circuit	29
	2.8.1	Generators frequency variation	29
	2.8.2	Power flow variation on the interconnection and on Sebeta circuits	30
	2.9 Sh	ort-circuit at Gigel Gibe II on the Sebeta - Gigel Gibe II circuit	32
	2.9.1	Generators frequency variation	32
	2.9.2	Power flow variation on the interconnection and on Sebeta circuits	33
	2.9.3	Voltage variation on the 400 and 500 kV	34
	2.10 Sh	ort-circuit at Kosti on Kosti - Fula	35
	2.10.1	Generators frequency variation	35
	2.10.2	Power flow variation on ENTRO interconnection	36
	2.10.3	Voltage variation on the 400 and 500 kV	37
	2 11 Sh	ort-circuit at Kosti on Kosti - Meringan	38
	2.11 51	Generators frequency variation	38
	2.11.2 Aulia	Power flow variation on ENTRO interconnection and on Kosti - Meringan, Kosti - Fula and Kosti - 39	J.
	2.11.3	Voltage variation on the 400 and 500 kV	40
	2.12 61	ort sinouit at Vasti an Vasti Jahal Aulia	41
	2.12 Sn 2.12 1	Generators frequency variation	41 ⊿1
	<u> </u>	~	f I

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2015 Appendix Stability Study

2.12.2	Power flow variation on the interconnection and on Kosti - Jebel Aulia and Kosti - Meringan	
2.12.3	Voltage variation on the 400 and 500 kV	43
2.13 Trip	pping of the main unit in Sudan : Port Sudan 380 MW steam turbine	44
2.13.1	Generators frequency variation	
2.13.2	Power flow variation on the interconnection	
2.13.3	Voltage variation	
2.14 Trip	pping of the main unit in Ethiopia : Gibe III 225 MW unit	47
2.14.1	Generators frequency variation	
2.14.2	Power flow variation on the interconnection	
2.14.3	Voltage variation	

LIST OF TABLES

LIST OF FIGURES

2.1.1 GE	ENERATORS FREQUENCY VARIATION	8
2.1.2 Pc	WER FLOW VARIATION ON THE INTERCONNECTION	9
2.1.3 Vo	DLTAGE VARIATION ON THE 400/500 KV INTERCONNECTION	. 10
2.2.1 GE	ENERATORS FREQUENCY VARIATION	. 11
2.2.2 Pc	WER FLOW VARIATION ON THE INTERCONNECTION	. 12
2.2.3 Vo	DLTAGE VARIATION ON THE 400 AND 500 KV	. 13
2.3.1 GE	ENERATORS FREQUENCY VARIATION	. 14
2.3.2 Pc	WER FLOW VARIATION ON THE INTERCONNECTION AND ON MANDAYA 500/400 KV TRANSFORMERS	. 15
2.3.3 Vo	DLTAGE VARIATION ON THE 500 KV	. 16
2.4.1 GE	ENERATORS FREQUENCY VARIATION	. 17
2.4.2 Pc	WER FLOW VARIATION ON ENTRO INTERCONNECTION	. 18
2.4.3 Vo	DLTAGE VARIATION	. 19
2.5.1 GE	ENERATORS FREQUENCY VARIATION	. 20
2.5.2 Pc	WER FLOW VARIATION ON THE INTERCONNECTION AND ON MANDAYA - GHIMBI	. 21
2.5.3 Vo	DLTAGE VARIATION ON THE 400 AND 500 KV	. 22
2.6.1 GE	ENERATORS FREQUENCY VARIATION	. 23
2.6.2 Pc	WER FLOW VARIATION ON THE INTERCONNECTION AND ON GHEDO - GHIMBI	. 24
2.6.3 Vo	DLTAGE VARIATION ON THE 400 AND 500 KV	. 25
2.7.1 GE	ENERATORS FREQUENCY VARIATION	. 26
2.7.2 Pc	WER FLOW VARIATION ON THE INTERCONNECTION AND ON SEBETA - GHEDO	. 27
2.7.3 Vo	DLTAGE VARIATION ON THE 400 AND 500 KV	. 28
2.8.1 GE	ENERATORS FREQUENCY VARIATION	. 29
2.8.2 Pc	WER FLOW VARIATION ON THE INTERCONNECTION AND ON SEBETA CIRCUITS	. 30
2.9.1 GE	ENERATORS FREQUENCY VARIATION	. 32
2.9.2 Pc	WER FLOW VARIATION ON THE INTERCONNECTION AND ON SEBETA CIRCUITS	. 33
2.9.3 Vo	DLTAGE VARIATION ON THE 400 AND 500 KV	. 34
2.10.1	GENERATORS FREQUENCY VARIATION	. 35
2.10.2	Power FLOW VARIATION ON ENTRO INTERCONNECTION	. 36
2.10.3	Voltage variation on the 400 and 500 kV	. 37
2.11.1	GENERATORS FREQUENCY VARIATION	. 38
2.11.2	Power FLOW VARIATION ON ENTRO INTERCONNECTION AND ON KOSTI - MERINGAN, KOSTI - FULA ANI	C
Ko)sti - J. Aulia	. 39
2.11.3	Voltage variation on the 400 and 500 kV	. 40
2.12.1	GENERATORS FREQUENCY VARIATION	. 41
2.12.2	POWER FLOW VARIATION ON THE INTERCONNECTION AND ON KOSTI - JEBEL AULIA AND KOSTI - MERING	AN
	42	
2.12.3	Voltage variation on the 400 and 500 kV	. 43
2.13.1	GENERATORS FREQUENCY VARIATION	. 44
2.13.2	Power FLOW VARIATION ON THE INTERCONNECTION	. 45
2.13.3	VOLTAGE VARIATION	. 46
2.14.1	GENERATORS FREQUENCY VARIATION	. 47
2.14.2	POWER FLOW VARIATION ON THE INTERCONNECTION	. 48
2.14.3	VOLTAGE VARIATION	. 49

ABBREVIATIONS AND ACRONYMS

AC	Alternative Current			
CCG	Combined Cycle Gas turbine			
DC	Direct Current			
ENPTPS	Eastern Nile Power Trade Program Study			
EDF	Electricité de France			
EN	Eastern Nile			
ENTRO	Eastern Nile Technical Regional Office			
GEP	Generation Expansion Plan			
HPP	Hydro Power Plant			
HD	High Dam			
HV	High Voltage			
HVDC	High Voltage Direct Current			
NBI	Nile Basin Initiative			
NH	Nag Hammadi			
OHL	Over Head Line			
pu	per unit			
SC	Short Circuit			
ST	Steam Turbine			
SVC	Static Voltage Compensator			
SW	Scott Wilson			

Note : Rabak / Kosti

The location of the interconnection in Sudan was modified during the Line Routing study.

Initially located at Rabak (east side of the Nile) in Phase I, the line routing study (during Phase II) located the interconnection substation in Sudan on the west side of the Nile river at Kosti.

The name used in the simulation was Rabak.

1 TRANSIENT STABILITY ANALYSIS HYPOTHESIS

The volume of spinning reserve set as followed :

- Sudan : 199 MW
- Ethiopia : 134 MW (hydropower plant only)

Load voltage and frequency dependency coefficients

	dP/dV	dP/df	dQ/dV	dQ/df
Ethiopia	0.94	1.26	3.67	-1.29
Sudan	0.79	1.53	4.14	-0.72

 Table 1. Load voltage and frequency dependency coefficients

Calculation of the damping magnitude of the power oscillations

The power oscillations evolve according to the formula :

A.e^{$$-\alpha t$$}.cos($\omega t + \varphi$) with $\omega = 2\pi f_x$

From the curves it is possible to measure the frequency, f_x of the oscillations. (generally a low value close to 0.3Hz or 0.5Hz)

The apparent damping coefficient D of the oscillation mode is equal to :

$$\mathbf{D} = \frac{\boldsymbol{\alpha}}{\sqrt{\boldsymbol{\alpha}^2 + \boldsymbol{\beta}^2}} \quad \text{with } \boldsymbol{\beta} = 2\pi \mathbf{f}$$

and α is like that $e^{-\alpha t} = 0.05$ with *t* is the damping duration.

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2015 Appendix Stability Study

The international literature concerning the inter-area oscillations, indicates that an inter-area oscillation mode is acceptably damped if the damping coefficient is close to 5% and it is well damped if the damping coefficient is higher than 5%.

According to the above formula, the apparent damping coefficient for the average frequency was estimated from the curves and the results.

2 2015 PEAK LOAD SITUATION

2.1 SHORT-CIRCUIT AT KOSTI ON ONE OF THE 2 KOSTI - MANDAYA CIRCUITS

<u>Event</u>: a 3 phase short-circuit at Kosti end, on one of the 2 circuits Mandaya - Kosti, cleared in 120 ms by the opening of the circuit breakers.

2.1.1 GENERATORS FREQUENCY VARIATION

GG2 is Gibel Gibe II GG3 is Gibe III

2.1.2 POWER FLOW VARIATION ON THE INTERCONNECTION

2.1.3 VOLTAGE VARIATION ON THE 400/500 KV INTERCONNECTION

2.2 SHORT-CIRCUIT AT MANDAYA ON ON ONE OF THE 2 MANDAYA - KOSTI CIRCUITS

<u>Event</u> : a 3 phase short-circuit at Mandaya end, on one of the 2 circuits Mandaya - Kosti, cleared in 120 ms by the opening of the circuit breakers.

2.2.1 GENERATORS FREQUENCY VARIATION

2015_Pk_Ant_CC_Man_Rbk

GG3 is Gibe III

2.2.2 POWER FLOW VARIATION ON THE INTERCONNECTION

2.2.3 VOLTAGE VARIATION ON THE 400 AND 500 KV

2.3 SHORT-CIRCUIT ON ONE OF THE FOUR 400/500 KV TRANSFORMERS AT MANDAYA

<u>Event</u> : a 3 phase short-circuit at the 500 kV side on one of the four 500/400 kV transformers at Mandaya, cleared in 120 ms by the opening of the circuit breakers.

2.3.1 GENERATORS FREQUENCY VARIATION

GG3 is Gibe III

Scot+ Wilson

2.3.3 VOLTAGE VARIATION ON THE 500 KV

2.4 SHORT-CIRCUIT AT GEDAREF, ON THE 220 KV PHASE-SHIFT TRANSFORMER

<u>Event</u>: a 3 phase short-circuit at Gedaref 220 kV end, on the 220 kV phase shift transformer, cleared in 120 ms by the opening of the circuit breakers.

2.4.1 GENERATORS FREQUENCY VARIATION

2015_Pk_Ant_CC_Tfo_deph

GG3 is Gibe III

2.4.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.4.3 VOLTAGE VARIATION

2.5 SHORT-CIRCUIT AT MANDAYA ON ONE OF THE 2 CIRCUITS MANDAYA - GHIMBI

Event : a 3 phase short-circuit at Ghimbi end, on one of the 2 circuits Mandaya - Ghimbi, cleared in 100 ms by the opening of the circuit breakers.

2.5.1 GENERATORS FREQUENCY VARIATION

2015_Pk_Ant_CC_Ghim_Mand

GG3 is Gibe III

2.5.2 POWER FLOW VARIATION ON THE INTERCONNECTION AND ON MANDAYA - GHIMBI

2.5.3 VOLTAGE VARIATION ON THE 400 AND 500 KV

2.6 SHORT-CIRCUIT AT GHEDO ON ONE OF THE 2 CIRCUITS GHIMBI - GHEDO

<u>Event</u> : a 3 phase short-circuit at Ghedo end, on one of the 2 circuits Ghimbi - Ghedo, cleared in 100 ms by the opening of the circuit breakers.

2.6.1 GENERATORS FREQUENCY VARIATION

2015_Pk_Ant_CC_Ghed_Ghim

GG2 is Gigel Gibe II GG3 is Gibe III

2.6.2 POWER FLOW VARIATION ON THE INTERCONNECTION AND ON GHEDO - GHIMBI

2.6.3 VOLTAGE VARIATION ON THE 400 AND 500 KV

2.7 SHORT-CIRCUIT AT SEBETA ON ONE OF THE 2 CIRCUITS SEBETA - GHEDO

<u>Event</u>: a 3 phase short-circuit at Sebeta end, on one of the 2 circuits Sebeta - Ghedo, cleared in 100 ms by the opening of the circuit breakers.

2.7.1 GENERATORS FREQUENCY VARIATION

2015_Pk_Ant_CC_Sebet_Ghed

GG2 is Gigel Gibe II GG3 is Gibe III

2.7.2 POWER FLOW VARIATION ON THE INTERCONNECTION AND ON SEBETA - GHEDO

Scot+ Wilson

2.7.3 VOLTAGE VARIATION ON THE 400 AND 500 KV

2.8 SHORT-CIRCUIT AT SEBETA ON THE 400 KV SEBETA - KALITI CIRCUIT

<u>Event</u>: a 3 phase short-circuit at Sebeta end, on the Sebeta - Kaliti circuits, cleared in 100 ms by the opening of the circuit breakers.

2.8.1 GENERATORS FREQUENCY VARIATION

2015_Pk_Ant_CC_Sebet_Kaliti

GG2 is Gigel Gibe II GG3 is Gibe III

2.8.2 POWER FLOW VARIATION ON THE INTERCONNECTION AND ON SEBETA CIRCUITS

Scot+ Wilson

2.9 SHORT-CIRCUIT AT GIGEL GIBE II ON THE SEBETA - GIGEL GIBE II CIRCUIT

<u>Event</u> : a 3 phase short-circuit at Gigel Gibe II end, on the Sebeta - Gigel Gibe II circuit, cleared in 100 ms by the opening of the circuit breakers.

2.9.1 GENERATORS FREQUENCY VARIATION

2015_Pk_Ant_CC_GGII-Sebet

GG2 is Gigel Gibe II GG3 is Gibe III

2.9.2 POWER FLOW VARIATION ON THE INTERCONNECTION AND ON SEBETA CIRCUITS

Scot+ Wilson

2.9.3 VOLTAGE VARIATION ON THE 400 AND 500 KV

2.10 SHORT-CIRCUIT AT KOSTI ON KOSTI - FULA

<u>Event</u> : a 3 phase short-circuit at Kosti end, on one of the 2 circuits Kosti - Fula, cleared in 120 ms by the opening of the circuit breakers.

2.10.1 GENERATORS FREQUENCY VARIATION

2015_Pk_Ant_CC_Rbk-Fula

GG3 is Gibe III Fula234 are Fula 128 MW steam units

2.10.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.10.3 VOLTAGE VARIATION ON THE 400 AND 500 KV

2.11 SHORT-CIRCUIT AT KOSTI ON KOSTI - MERINGAN

<u>Event</u>: a 3 phase short-circuit at Kosti end, on the circuit Kosti - Meringan, cleared in 120 ms by the opening of the circuit breakers.

2.11.1 GENERATORS FREQUENCY VARIATION

2015_Pk_Ant_CC_Rbk-Merin

GG3 is Gibe III

2.11.3 VOLTAGE VARIATION ON THE 400 AND 500 KV

2.12 SHORT-CIRCUIT AT KOSTI ON KOSTI - JEBEL AULIA

<u>Event</u>: a 3 phase short-circuit at Kosti end, on the circuit Kosti - Jebel Aulia, cleared in 120 ms by the opening of the circuit breakers.

2.12.1 GENERATORS FREQUENCY VARIATION

2015_Pk_Ant_CC_Rbk-J.Aul

GG3 is Gibe III

2.12.3 VOLTAGE VARIATION ON THE 400 AND 500 KV

2.13 TRIPPING OF THE MAIN UNIT IN SUDAN : PORT SUDAN 380 MW STEAM TURBINE

Event : the 450 MVA steam unit of Port-Sudan (the main unit in Sudan) is tripped.

2.13.1 GENERATORS FREQUENCY VARIATION

2015_Pk_Ant_P_P.S_ST450MVA

GG3 is Gibe III

2.13.2 POWER FLOW VARIATION ON THE INTERCONNECTION

2.13.3 VOLTAGE VARIATION

2.14 TRIPPING OF THE MAIN UNIT IN ETHIOPIA : GIBE III 225 MW UNIT

2.14.1 GENERATORS FREQUENCY VARIATION

2015_Pk_Ant_P_P.S_GG3-2

GG3 is Gibe III

2.14.2 POWER FLOW VARIATION ON THE INTERCONNECTION

2.14.3 VOLTAGE VARIATION

Nile Basin Initiative Eastern Nile Subsidiary Action Program Eastern Nile Technical Regional Office

M1 – 2020 Appendix Stability Study

TABLE OF CONTENTS

1	TRANSIENT STABILITY ANALYSIS HYPOTHESIS	. 7
2	2020 PEAK LOAD SITUATION	9
3	2020 INTERMEDIATE LOAD SITUATION	86

LIST OF FIGURES

2.1	Tripping of one of the 2 poles of the DC interconection	9
2.1	.1 Generators frequency variation	9
2.1	.2 Power flow variation on interconnection	
2.1	.3 Power flow variation on Nag Hammadi 500 kV circuits	
2.1	.4 Power flow variation on Egypt Interconnections	
2.1	.5 Voltage variation on the 500 kV	14
2.2	Short-circuit at Rabak on one of the 4 Rabak - Mandaya circuits	14
2.2	.1 Generators frequency variation	
2.2	Power flow variation on ENTRO interconnection	16
2.2	Power flow variation on Nag Hammadi 500 kV circuits	
2.2	Power flow variation on Egypt Interconnections	
2.2	2.5 Voltage variation on the 500 kV	
2.3	Short-circuit at Mandaya on Mandaya - Rabak with full recovery of the DC exchange	
2.3	.1 Generators frequency variation	
2.3	2.2 Power flow variation on ENTRO interconnection	24
2.3	Voltage variation on the 500 kV	
2.4	Short-circuit at Mandaya on Mandaya - Rabak with half recovery of the DC exchange	27
2.4	Generators frequency variation	
2.4	2.2 Power flow variation on ENTRO interconnection	
2.4	A.3 Power flow variation on Nag Hammadi 500 kV circuits	
2.4	Voltage variation on the 500 kV	
2.5	Short-circuit on one of the four 400/500 kV transformers at Mandava	34
2.5	6.1 Generators frequency variation	
2.5	2.2 Power flow variation on ENTRO interconnection	
2.5	5.3 Power flow variation Mandaya 500/400 kV transformers	
2.5	Voltage variation on the 500 kV	
26	Short-circuit at Gedaref, on the 220 kV phase-shift transformer	40
2.0	51 Generators frequency variation	40
2.6	5.2 Power flow variation on ENTRO interconnection	
2.6	5.3 Voltage variation on the 500 kV	
27	Short arout at High Dam side on one of the 2 aircuits High Dam. Nog Hammadi	12
2.1	Short-circuit at High Dain Side, on one of the 2 circuits High Dain - Nag Hammadi	
2.7	2 Power flow variation on FNTRO interconnection	43 45
2.7	 Power flow variation on High Dam - Nag Hammadi - Assiut 	
2.7	 Voltage variation on the 500 kV. 	
20	Shart simuit at Nag Hammadi an Nag Hammadi High Dam	50
2.8	Short-circuit at Nag Hammadi on Nag Hammadi - High Dam	
∠.0 2	2 Power flow variation on ENTRO interconnection	
2.0	Power flow variation on Nag - Hammadi - High Dam	
2.8	Voltage variation on the 500 kV	
2.0	Shart airavit at Naz Harrenadi an NH500 - Sahaz airavit	50
2.9	Short-circuit at mag Hammadi on MHDUU - Sonag circuit	

M1 – 2020 Appendix Stability Study

2.9.1 2.9.2 2.9.3 2.9.4	Generators frequency variation Power flow variation on ENTRO interconnection Power flow variation on the circuit High Dam - Nag Hammadi - Assiut Voltage variation on the 500 kV	53 54 54 55
2.10 Sh 2.10.1 2.10.2 2.10.3 2.10.4	ort-circuit at Mandaya on one of the 3 circuits Mandaya - Ghimbi Generators frequency variation Power flow variation on ENTRO interconnection Power flow variation on Mandaya - Ghimbi Voltage variation on the 500 kV	56 56 57 58 59
2.11 Sh 2.11.1 2.11.2 2.11.3 2.11.4	ort-circuit at Rabak on Rabak - Fula Generators frequency variation Power flow variation on ENTRO interconnection Power flow variation on Rabak - Fula Voltage variation on the 500 kV	
2.12 Sh 2.12.1 2.12.2 2.12.3 2.12.4	ort-circuit at Rabak on Rabak - Meringan Generators frequency variation Power flow variation on ENTRO interconnection Power flow variation on Rabak - Meringan, Rabak - Fula and Rabak - J. Aulia Voltage variation on the 500 kV	
2.13 Sh 2.13.1 2.13.2 2.13.2 2.13.3 2.13.4	ort-circuit at Rabak on Rabak - Jebel Aulia Generators frequency variation Power flow variation on ENTRO interconnection Power flow variation on Rabak - Jebel Aulia and Rabak - Meringan Voltage variation on the 500 kV	
2.14 Tr 2.14.1 2.14.2 2.14.3 2.14.4	ipping of the main unit in EGypt : Abu Kir 650 MW steam turbine Generators frequency variation Power flow variation on Egypt - Libya and Egypt - Jordan interconnection Voltage variation Output variation of some generation units	
2.15 Tr 2.15.1 2.15.2 2.15.3 2.15.4	ipping of the main unit in Sudan : Port Sudan 530 MW steam turbine Generators frequency variation Power flow variation on ENTRO interconnection Voltage variation Output variation for some generation units	
2.16 Tr 2.16.1 2.16.2 2.16.3 2.16.4	ipping of the main 2 units in Ethiopia : 2 units of 212.5 MW in Mandaya Generators frequency variation Power flow variation on ENTRO interconnection Voltage variation Output variation for some generation units	
3.1 Tr. 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	ipping of one of the 2 poles of the DC interconection Generators frequency variation Power flow variation on ENTRO interconnection Power flow variation on Nag Hammadi 500 kV circuits Power flow variation on Egypt Interconnections Voltage variation on the 500 kV	
3.2 Sh 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	ort-circuit at Rabak on one of the 4 Rabak - Mandaya circuits Generators frequency variation Power flow variation on ENTRO interconnection Power flow variation on Nag Hammadi 500 kV circuits Power flow variation on Egypt Interconnections Voltage variation on the 500 kV	
3.3 Sh 3.3.1	ort-circuit at Mandaya on Mandaya - Rabak with half recovery of the DC exchange Generators frequency variation	

M1 – 2020 Appendix Stability Study

3.3.2	Power flow variation on ENTRO interconnection	104
3.3.3	Power flow variation on Nag Hammadi 500 kV circuits	106
3.3.4	Voltage variation on the 500 kV	107
3.4 Sho	ort-circuit on one of the four 400/500 kV transformers at Mandaya	109
3.4.1	Voltage at Nag Hammadi without tripping of half of the DC power flow (or one of the 2 poles)	109
3.4.2	Generators frequency variation	110
3.4.3	Power flow variation on ENTRO interconnection	112
3.4.4	Power flow variation on Nag Hammadi 500 kV circuits	114
3.4.5	Power flow variation Mandaya 500/400 kV transformers	115
3.4.6	Voltage variation on the 500 kV	116
3.5 Sho	ort-circuit at Gedaref, on the 220 kV phase-shift transformer	118
3.5.1	Generators frequency variation	118
3.5.2	Power flow variation on ENTRO interconnection	119
3.5.3	Voltage variation on the 500 kV	120
3.6 Sho	ort-circuit at High Dam side, on one of the 2 circuits High Dam - Nag Hammadi	121
3.6.1	Generators frequency variation	121
3.6.2	Power flow variation on ENTRO interconnection	123
3.6.3	Power flow variation on High Dam – Nag Hammadi - Assiut	124
3.6.4	Voltage variation on the 500 kV	125
3.7 Sho	ort-circuit at Nag Hammadi on Nag Hammadi - High Dam	127
3.7.1	Generators frequency variation	127
3.7.2	Power flow variation on High Dam – Nag Hammadi - Assiut	128
3.7.3	Voltage variation on the 500 kV	129
3.8 Sho	ort-circuit at Nag Hammadi on NH500 - Sohag circuit	130
3.8.1	Voltage variation and DC power flow without any additional device	130
3.8.2	Implementation of a SVC in Rabak	131
3.8.3	Implementation of an additional circuit Nag Hammadi – Assiut	137
3.9 Sho	ort-circuit at Mandaya on one of the 3 circuits Mandaya - Ghimbi	142
3.9.1	Generators frequency variation	142
3.9.2	Power flow variation on ENTRO interconnection	144
3.9.3	Power flow variation on Mandaya - Ghimbi	146
3.9.4	Voltage variation on the 500 kV.	147
3.10 Sho	ort-circuit at Rabak on Rabak - Fula	149
3.10.1	Generators frequency variation	149
3.10.2	Power flow variation on ENTRO interconnection	151
3.10.3	Power flow variation on Rabak - Fula	152
3.10.4	Voltage variation on the 500 kV	153
3.11 Sho	ort-circuit at Rabak on Rabak - Meringan	155
3.11.1	Generators frequency variation	155
3.11.2	Power flow variation on ENTRO AC interconnection	157
3.11.3	Power flow variation on Rabak - Fula, Rabak - Meringan and Rabak - J.Aulia	158
3.11.4	Voltage variation on the 500 kV	159
3.11.5	Voltage variation at Rabak substation	161
3.12 Sho	ort-circuit at Rabak on Rabak - Jebel Aulia	162
3.12.1	Generators frequency variation	162
3.12.2	Power flow variation on ENTRO interconnection	164
3.12.3	Power flow variation on Rabak - Jebel Aulia and Rabak - Meringan	165
3.12.4	Voltage variation on the 500 kV	166
3.13 Trip	pping of the main unit in EGypt : Abu Kir 650 MW steam turbine	169
3.13.1	Generators frequency variation	169
3.13.2	Power flow variation on Egypt - Libya and Egypt - Jordan interconnection	170
3.13.3	Voltage variation	171
3.13.4	Output variation of Abu Kir ST	172

M1 – 2020 Appendix Stability Study

3.14 Trip	ping of the main unit in Sudan : Port Sudan 530 MW steam turbine	
3.14.1	Generators frequency variation	
3.14.2	Power flow variation on ENTRO interconnection	
3.14.3	Voltage variation	
3.14.4	Output variation for some generation units	
215 Trin		
5.15 IIIp	ping of the main 2 units in Ethiopia : 2 units of 212.5 MW in Mandaya	
3.15 Inp 3.15.1	Generators frequency variation.	
3.15.1 3.15.2	Generators frequency variation	
3.15.1 3.15.2 3.15.3	Generators frequency variation	

M1 – 2020 Appendix Stability Study

ABBREVIATIONS AND ACRONYMS

AC	Alternative Current		
CCG	Combined Cycle Gas turbine		
DC	Direct Current		
ENPTPS	Eastern Nile Power Trade Program Study		
EDF	Electricité de France		
EN	Eastern Nile		
ENTRO	Eastern Nile Technical Regional Office		
GEP	Generation Expansion Plan		
HPP	Hydro Power Plant		
HD	High Dam		
HV	High Voltage		
HVDC	High Voltage Direct Current		
NBI	Nile Basin Initiative		
NH	Nag Hammadi		
p.u	per unit		
ST	Steam Turbine		
SVC	Static Voltage Compensator		
SW	Scott Wilson		
TPP	Thermal Power Plant		

M1 – 2020 Appendix Stability Study

1 TRANSIENT STABILITY ANALYSIS HYPOTHESIS

The volume of spinning reserve set as followed :

- Libya : 50 MW
- Jordan and Syria : 100 MW
- Egypt : 404 MW (104 MW on hydropower plants + 300 MW on thermal plants)
- Sudan : 420 MW
- Ethiopia : 697 MW (hydropower plant only)

Load voltage and frequency dependency coefficients

	dP/dV	dP/df	dQ/dV	dQ/df
Egypt	0.83	1.46	4.01	-0.88
Ethiopia	0.94	1.26	3.67	-1.29
Sudan	0.79	1.53	4.14	-0.72

Load of Libya, Jordan and Syria

The 2020 peak load forecast for Libya reached 7100 MW.

The 2020 peak load forecast for Jordan and Syria reached 15000 MW.

Calculation of the damping magnitude of the power oscillations

The power oscillations evolve according to the formula :

A.e^{$-\alpha t$}.cos($\omega t + \varphi$) with $\omega = 2\pi f_x$

From the curves it is possible to measure the frequency, f_x of the oscillations. (generally a low value close to 0.3Hz or 0.5Hz)

The apparent damping coefficient D of the oscillation mode is equal to :

$$\mathbf{D} = \frac{\boldsymbol{\alpha}}{\sqrt{\boldsymbol{\alpha}^2 + \boldsymbol{\beta}^2}} \quad \text{with } \boldsymbol{\beta} = 2\pi \mathbf{f}$$

and α is like that $e^{-\alpha t} = 0.05$ with *t* is the damping duration.

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2020 Appendix Stability Study

The international literature concerning the inter-area oscillations, indicates that an inter-area oscillation mode is acceptably damped if the damping coefficient is close to 5% and it is well damped if the damping coefficient is higher than 5%.

According to the above formula, the apparent damping coefficient for the average frequency was estimated from the curves and the results.

M1 – 2020 Appendix Stability Study

2 2020 PEAK LOAD SITUATION

2.1 TRIPPING OF ONE OF THE 2 POLES OF THE DC INTERCONECTION

<u>Event :</u> one of the 2 poles was tripped following an internal fault. 200 ms after, half of the capacitor banks of each HVDC substations were disconnected.

2.1.1 GENERATORS FREQUENCY VARIATION

CC_2020_PL_Trip_1000MW_DC

*GG3 is Gibe 3

2.1.2 POWER FLOW VARIATION ON INTERCONNECTION

2.1.3 POWER FLOW VARIATION ON NAG HAMMADI 500 KV CIRCUITS

2.1.4 POWER FLOW VARIATION ON EGYPT INTERCONNECTIONS

2.1.5 VOLTAGE VARIATION ON THE 500 KV

2.2 SHORT-CIRCUIT AT RABAK ON ONE OF THE 4 RABAK - MANDAYA CIRCUITS

<u>Event</u>: a 3 phase short-circuit at Rabak end, on one of the 4 circuits Mandaya - Rabak, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Rabak (0 pu) led to a transitory blocking of commutation of the inverter station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before recovering to half of its initial value. At the same time, half of the capacitor banks were triped.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.2.1 GENERATORS FREQUENCY VARIATION

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam GG3 is Gibe III

2.2.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.2.3 POWER FLOW VARIATION ON NAG HAMMADI 500 KV CIRCUITS

2.2.4 POWER FLOW VARIATION ON EGYPT INTERCONNECTIONS

2.2.5 VOLTAGE VARIATION ON THE 500 KV

2.3 SHORT-CIRCUIT AT MANDAYA ON MANDAYA - RABAK WITH FULL RECOVERY OF THE DC EXCHANGE

Event : a 3 phase short-circuit at Mandaya end, on one of the 4 circuits Mandaya - Rabak, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Rabak (0.4 pu) led to a transitory blocking of commutation of the inverter station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before recovering to its initial value 300 ms after the clearing of the fault.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.3.1 **GENERATORS FREQUENCY VARIATION**

CC 2020 PL Mandaya Rbk

GG3 is Gibe III

M1 – 2020 Appendix Stability Study

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

2.3.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.3.3 VOLTAGE VARIATION ON THE 500 KV

2.4 SHORT-CIRCUIT AT MANDAYA ON MANDAYA - RABAK WITH HALF RECOVERY OF THE DC EXCHANGE

Event : a 3 phase short-circuit at Mandaya end, on one of the 4 circuits Mandaya - Rabak, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Rabak (0.4 pu) led to a transitory blocking of commutation of the inverter station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before recovering to half of its initial value 300 ms after the clearing of the fault. At the same time, half of the capacitors banks are disconnected at the same time.

2.4.1 GENERATORS FREQUENCY VARIATION

GG3 is Gibe III

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

2.4.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.4.3 POWER FLOW VARIATION ON NAG HAMMADI 500 KV CIRCUITS

2.4.4 VOLTAGE VARIATION ON THE 500 KV

2.5 SHORT-CIRCUIT ON ONE OF THE FOUR 400/500 KV TRANSFORMERS AT MANDAYA

Event : a 3 phase short-circuit at the 500 kV side on one of the four 500/400 kV transformers at Mandaya, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Rabak (0.5 pu) led to a transitory blocking of commutation of the inverter station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before recovering to half of its initial value 300 ms after the clearing of the fault. At the same time, half of the capacitors banks are disconnected at the same time.

2.5.1 GENERATORS FREQUENCY VARIATION

GG3 is Gibe III

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

2.5.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.5.3 POWER FLOW VARIATION MANDAYA 500/400 KV TRANSFORMERS

2.5.4 VOLTAGE VARIATION ON THE 500 KV

M1 – 2020 Appendix Stability Study

2.6 SHORT-CIRCUIT AT GEDAREF, ON THE 220 KV PHASE-SHIFT TRANSFORMER

<u>Event :</u> a 3 phase short-circuit at Gedaref 220 kV end, on the 220 kV phase shift transformer, cleared in 120 ms by the opening of the circuit breakers.

2.6.1 GENERATORS FREQUENCY VARIATION

GG3 is Gibe III

2.6.2 **POWER FLOW VARIATION ON ENTRO INTERCONNECTION**

2.6.3 VOLTAGE VARIATION ON THE 500 KV

2.7 SHORT-CIRCUIT AT HIGH DAM SIDE, ON ONE OF THE 2 CIRCUITS HIGH DAM - NAG HAMMADI

<u>Event :</u> a 3 phase short-circuit at High Dam end, on one of the 2 circuits High Dam - Nag Hammadi, cleared in 100 ms by the opening of the circuit breakers.

The voltage drop in Nag Hammadi (~60%) led to a transitory blocking of commutation of the inverter station at Nag Hammadi. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.7.1 GENERATORS FREQUENCY VARIATION

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

CC_2020_HD_NH

2.7.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

CC_2020_HD_NH

2.7.3 POWER FLOW VARIATION ON HIGH DAM - NAG HAMMADI - ASSIUT

2.7.4 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2020 Appendix Stability Study

2.8 SHORT-CIRCUIT AT NAG HAMMADI ON NAG HAMMADI - HIGH DAM

<u>Event :</u> a 3 phase short-circuit at Nag Hammadi end, on one of the 2 circuits High Dam - Nag Hammadi, cleared in 100 ms by the opening of the circuit breakers.

The voltage drop in Nag Hammadi (to 0 pu) led to a transitory blocking of commutation of the inverter station at Nag Hammadi. The flow on the DC interconnection is transitory reduced to 0, The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

For the Ethiopian and Sudanese side, the impact on the system and its behaviour is very similar to the case of SC on High Dam - Nag Hammadi

2.8.1 GENERATORS FREQUENCY VARIATION

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

M1 – 2020 Appendix Stability Study

POWER FLOW VARIATION ON ENTRO INTERCONNECTION 2.8.2

For power flow variation on Ethiopia - Sudan interconneciton and on the DC interconnection between Sudan and Egypt, the situation is very similar to the case with trhe SC on High Dam - Nag Hammadi.

2.8.3 POWER FLOW VARIATION ON NAG - HAMMADI - HIGH DAM

2.8.4 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2020 Appendix Stability Study

2.9 SHORT-CIRCUIT AT NAG HAMMADI ON NH500 - SOHAG CIRCUIT

Event : a 3 phase short-circuit at Nag Hammadi end, on the circuit Nag Hammadi - Sohag, cleared in 100 ms by the opening of the circuit breakers.

The voltage drop in Nag Hammadi (to 0 pu) led to a transitory blocking of commutation of the inverter station at Nag Hammadi. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

For the Ethiopian and Sudanese side, the impact on the system and its behaviour is very similar to the case of SC on High Dam - Nag Hammadi

2.9.1 GENERATORS FREQUENCY VARIATION

CC 2020 PL NH Sohag

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam Scot+ Wilson

M1 – 2020 Appendix Stability Study

2.9.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

For power flow variation on Ethiopia - Sudan interconneciton and on the DC interconnection between Sudan and Egypt, the situation is very similar to the case with trhe SC on High Dam - Nag Hammadi.

2.9.3 POWER FLOW VARIATION ON THE CIRCUIT HIGH DAM - NAG HAMMADI - ASSIUT

CC_2020_PL_NH_Sohag

2.9.4 VOLTAGE VARIATION ON THE 500 KV

2.10 SHORT-CIRCUIT AT MANDAYA ON ONE OF THE 3 CIRCUITS MANDAYA - GHIMBI

Event : a 3 phase short-circuit at Mandaya end, on one of the 3 circuits Mandaya - Ghimbi, cleared in 100 ms by the opening of the circuit breakers.

The voltage drop in Rabak (to 0.6 pu) led to a transitory blocking of commutation of the rectifier station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

For the Egyptian side, the impact on the system and its behaviour is very similar to the case of SC on Rabak - Fula

2.10.1 **GENERATORS FREQUENCY VARIATION**

CC_2020_PL_Mandaya_Ghimbi

GG3 is Gibe III

2.10.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.10.3 POWER FLOW VARIATION ON MANDAYA - GHIMBI

2.10.4 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2020 Appendix Stability Study

2.11 SHORT-CIRCUIT AT RABAK ON RABAK - FULA

Event : a 3 phase short-circuit at Rabak end, on one of the 2 circuits Rabak - Fula, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Rabak (to 0 pu) led to a transitory blocking of commutation of the rectifier station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.11.1 GENERATORS FREQUENCY VARIATION

GG3 is Gibe III

Gen_440_3 is a group of High Dam Gen 530 is the existing steam turbine in Kurimat

2.11.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.11.3 POWER FLOW VARIATION ON RABAK - FULA

2.11.4 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2020 Appendix Stability Study

2.12 SHORT-CIRCUIT AT RABAK ON RABAK - MERINGAN

Event : a 3 phase short-circuit at Rabak end, on the circuit Rabak - Meringan, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Rabak (to 0 pu) led to a transitory blocking of commutation of the rectifier station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

For the Egyptian side, the impact on the system and its behaviour is very similar to the case of SC on Rabak - Fula

2.12.1 GENERATORS FREQUENCY VARIATION

CC_2020_PL_Rabak-Meringan

is Gibe III

GG3

2.12.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.12.3 POWER FLOW VARIATION ON RABAK - MERINGAN, RABAK - FULA AND RABAK - J. AULIA

2.12.4 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2020 Appendix Stability Study

2.13 SHORT-CIRCUIT AT RABAK ON RABAK - JEBEL AULIA

Event : a 3 phase short-circuit at Rabak end, on the circuit Rabak – Jebel Aulia, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Rabak (to 0 pu) led to a transitory blocking of commutation of the rectifier station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

For the Egyptian side, the impact on the system and its behaviour is very similar to the case of SC on Rabak - Fula

2.13.1 GENERATORS FREQUENCY VARIATION

CC_2020_PL_Rabak-J.Aulia

GG3 is Gibe III

2.13.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

Scot+ Wilson

2.13.4 VOLTAGE VARIATION ON THE 500 KV

2.14 TRIPPING OF THE MAIN UNIT IN EGYPT : ABU KIR 650 MW STEAM TURBINE

2.14.1 GENERATORS FREQUENCY VARIATION

CC_2020_PL_Trip_G_A.KIR

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

2.14.2 POWER FLOW VARIATION ON EGYPT - LIBYA AND EGYPT - JORDAN INTERCONNECTION

2.14.3 VOLTAGE VARIATION

2.14.4 OUTPUT VARIATION OF SOME GENERATION UNITS

2.15 TRIPPING OF THE MAIN UNIT IN SUDAN : PORT SUDAN 530 MW STEAM TURBINE

Event : the 670 MVA steam unit of Port-Sudan (the main unit in Sudan) is tripped.

2.15.1 GENERATORS FREQUENCY VARIATION

GG3 is Gibe III

2.15.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.15.3 VOLTAGE VARIATION

2.15.4 OUTPUT VARIATION FOR SOME GENERATION UNITS

2.16 TRIPPING OF THE MAIN 2 UNITS IN ETHIOPIA : 2 UNITS OF 212.5 MW IN MANDAYA

2.16.1 GENERATORS FREQUENCY VARIATION

GG3 is Gibe III

2.16.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.16.3 VOLTAGE VARIATION

2.16.4 OUTPUT VARIATION FOR SOME GENERATION UNITS

3 2020 INTERMEDIATE LOAD SITUATION

3.1 TRIPPING OF ONE OF THE 2 POLES OF THE DC INTERCONECTION

<u>Event</u>: one of the 2 poles was tripped following an internal fault. 300 ms after, half of the capacitor banks of each HVDC substations were disconnected.

3.1.1 GENERATORS FREQUENCY VARIATION

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

M1 – 2020 Appendix Stability Study

GG3 is Gibe III

3.1.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

3.1.3 POWER FLOW VARIATION ON NAG HAMMADI 500 KV CIRCUITS

3.1.4 POWER FLOW VARIATION ON EGYPT INTERCONNECTIONS

3.1.5 VOLTAGE VARIATION ON THE 500 KV

3.2 SHORT-CIRCUIT AT RABAK ON ONE OF THE 4 RABAK - MANDAYA CIRCUITS

Event : a 3 phase short-circuit at Rabak end, on one of the 4 circuits Mandaya - Rabak, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Rabak (0 pu) led to a transitory blocking of commutation of the inverter station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before recovering to half of its initial value. At the same time, half of the capacitor banks were triped.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

3.2.1 GENERATORS FREQUENCY VARIATION

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

GG3 is Gibe III

3.2.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

3.2.3 POWER FLOW VARIATION ON NAG HAMMADI 500 KV CIRCUITS

3.2.4 POWER FLOW VARIATION ON EGYPT INTERCONNECTIONS

3.2.5 VOLTAGE VARIATION ON THE 500 KV

3.3 SHORT-CIRCUIT AT MANDAYA ON MANDAYA - RABAK WITH HALF RECOVERY OF THE DC EXCHANGE

Event : a 3 phase short-circuit at Mandaya end, on one of the 4 circuits Mandaya - Rabak, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Rabak (0.4 pu) led to a transitory blocking of commutation of the inverter station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before recovering to half of its initial value 300 ms after the clearing of the fault. At the same time, half of the capacitors banks are disconnected at the same time.

3.3.1 GENERATORS FREQUENCY VARIATION

GG3 is Gibe III

M1 – 2020 Appendix Stability Study

Gen_441_1 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

3.3.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

3.3.3 POWER FLOW VARIATION ON NAG HAMMADI 500 KV CIRCUITS

3.3.4 VOLTAGE VARIATION ON THE 500 KV

3.4 SHORT-CIRCUIT ON ONE OF THE FOUR 400/500 KV TRANSFORMERS AT MANDAYA

Event : a 3 phase short-circuit at the 500 kV side on one of the four 500/400 kV transformers at Mandaya, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Rabak (0.5 pu) led to a transitory blocking of commutation of the inverter station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before recovering to half of its initial value 300 ms after the clearing of the fault. At the same time, half of the capacitors banks are disconnected at the same time.

3.4.1 VOLTAGE AT NAG HAMMADI WITHOUT TRIPPING OF HALF OF THE DC POWER FLOW (OR ONE OF THE 2 POLES)

This event became acceptable on the Egypttian system with the installation of a 300 MVAr SVC at rabak.

3.4.2 GENERATORS FREQUENCY VARIATION

GG3 is Gibe III

Gen_441_1 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

3.4.3 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2020_IL_CC_Tfo_Mandaya

3.4.4 POWER FLOW VARIATION ON NAG HAMMADI 500 KV CIRCUITS

3.4.5 POWER FLOW VARIATION MANDAYA 500/400 KV TRANSFORMERS

3.4.6 VOLTAGE VARIATION ON THE 500 KV

M1 – 2020 Appendix Stability Study

3.5 SHORT-CIRCUIT AT GEDAREF, ON THE 220 KV PHASE-SHIFT TRANSFORMER

Event : a 3 phase short-circuit at Gedaref 220 kV end, on the 220 kV phase shift transformer, cleared in 120 ms by the opening of the circuit breakers.

The Egyptian system is not affected by the fault.

3.5.1 GENERATORS FREQUENCY VARIATION

2020_IL_CC_tfo_dephaseur

3.5.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

3.5.3 VOLTAGE VARIATION ON THE 500 KV

3.6 SHORT-CIRCUIT AT HIGH DAM SIDE, ON ONE OF THE 2 CIRCUITS HIGH DAM - NAG HAMMADI

Event : a 3 phase short-circuit at High Dam end, on one of the 2 circuits High Dam - Nag Hammadi, cleared in 100 ms by the opening of the circuit breakers.

The voltage drop in Nag Hammadi (~60%) led to a transitory blocking of commutation of the inverter station at Nag Hammadi. The flow on the DC interconnection is transitory reduced to 0, before recovering to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

3.6.1 GENERATORS FREQUENCY VARIATION

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

3.6.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

3.6.3 POWER FLOW VARIATION ON HIGH DAM – NAG HAMMADI - ASSIUT

3.6.4 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2020 Appendix Stability Study

3.7 SHORT-CIRCUIT AT NAG HAMMADI ON NAG HAMMADI - HIGH DAM

<u>Event :</u> a 3 phase short-circuit at Nag Hammadi end, on one of the 2 circuits High Dam - Nag Hammadi, cleared in 100 ms by the opening of the circuit breakers. The reactance in Nag Hammadi is tripped at the same time.

The voltage drop in Nag Hammadi (to 0 pu) led to a transitory blocking of commutation of the inverter station at Nag Hammadi. The flow on the DC interconnection is transitory reduced to 0, before recovering to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

For the Ethiopian and Sudanese side, the impact on the system and its behaviour is very similar to the case of SC on High Dam - Nag Hammadi

3.7.1 GENERATORS FREQUENCY VARIATION

2020_IL_CC_NH-HD

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

3.7.2 POWER FLOW VARIATION ON HIGH DAM – NAG HAMMADI - ASSIUT

3.7.3 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2020 Appendix Stability Study

3.8 SHORT-CIRCUIT AT NAG HAMMADI ON NH500 - SOHAG CIRCUIT

Event : a 3 phase short-circuit at Nag Hammadi end, on the circuit Nag Hammadi - Sohag, cleared in 100 ms by the opening of the circuit breakers.

The voltage drop in Nag Hammadi (to 0 pu) led to a transitory blocking of commutation of the inverter station at Nag Hammadi. The flow on the DC interconnection is transitory reduced to 0, before recovering to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

For the Ethiopian and Sudanese side, the impact on the system and its behaviour is very similar to the case of SC on High Dam - Nag Hammadi

3.8.1 VOLTAGE VARIATION AND DC POWER FLOW WITHOUT ANY ADDITIONAL DEVICE

Without any additional divice, the DC substation would face several commutation failure before a complete blocking. This situation is not satisfying.

Scot+ Wilson

3.8.2 IMPLEMENTATION OF A SVC IN RABAK

3.8.2.1 Voltage variation on the 500 kV

With a 200 MVAR SVC

2020_IL_CC_NH-SOHAG

M1 – 2020 Appendix Stability Study

With a 300 MVAR SVC

3.8.2.2 Frequency variation

Gen_440_3 is a group of High Dam

Gen_530_1 is group 1 of the existing steam turbine in Kurimat

2020_IL_CC_NH-SOHAG

3.8.2.3 Power flow variation on ENTRO interconnection

3.8.2.4 Power flow variation on the circuit High Dam - Nag Hammadi - Assiut

3.8.3 IMPLEMENTATION OF AN ADDITIONAL CIRCUIT NAG HAMMADI – ASSIUT

The behaviour of the Ethiopian – Sudan system is the same as in case of SVC in Rabak (since the DC substation only faced one commutation failure in both cases)

3.8.3.1 Voltage variation on the 500 kV

3.8.3.2 Frequency variation

Gen_441_1 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

2020_IL_CC_NH-SOHAG

3.8.3.3 Power flow variation on ENTRO interconnection

3.8.3.4 Power flow variation on the circuit High Dam - Nag Hammadi - Assiut

3.9 SHORT-CIRCUIT AT MANDAYA ON ONE OF THE 3 CIRCUITS MANDAYA - GHIMBI

<u>Event :</u> a 3 phase short-circuit at Mandaya end, on one of the 3 circuits Mandaya - Ghimbi, cleared in 100 ms by the opening of the circuit breakers.

The voltage drop in Rabak (to 0.5 pu) led to a transitory blocking of commutation of the rectifier station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before recovering to its initial value. During the transitory blocking of the DC stations, the capacitors bank remained connected.

3.9.1 GENERATORS FREQUENCY VARIATION

M1 – 2020 Appendix Stability Study

Gen_440_3 is a group of High Dam

Gen_530_1 is the existing steam turbine in Kurimat

3.9.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2020_IL_CC_Mandaya_Ghimbi

3.9.3 POWER FLOW VARIATION ON MANDAYA - GHIMBI

3.9.4 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2020 Appendix Stability Study

3.10 SHORT-CIRCUIT AT RABAK ON RABAK - FULA

Event : a 3 phase short-circuit at Rabak end, on one of the 2 circuits Rabak - Fula, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Rabak (to 0 pu) led to a transitory blocking of commutation of the rectifier station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before recovering to its initial value. During the transitory blocking of the DC stations, the capacitors bank remained connected.

3.10.1 GENERATORS FREQUENCY VARIATION

GG3 is Gibe 3

M1 – 2020 Appendix Stability Study

Gen_440_3 is a group of High Dam Gen 530 is the existing steam turbine in Kurimat

3.10.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

3.10.3 POWER FLOW VARIATION ON RABAK - FULA

3.10.4 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2020 Appendix Stability Study

3.11 SHORT-CIRCUIT AT RABAK ON RABAK - MERINGAN

Event : a 3 phase short-circuit at Rabak end, on the circuit Rabak - Meringan, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Rabak (to 0 pu) led to a transitory blocking of commutation of the rectifier station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before recovering to its initial value. During the transitory blocking of the DC stations, the capacitors bank remained connected.

3.11.1 **GENERATORS FREQUENCY VARIATION**

2020 IL CC Rabak Meringan

is Gibe III

GG3

M1 – 2020 Appendix Stability Study

Gen_440_3 is a group of High Dam

Gen_530_1 is the existing steam turbine in Kurimat

3.11.2 POWER FLOW VARIATION ON ENTRO AC INTERCONNECTION

3.11.3 POWER FLOW VARIATION ON RABAK - FULA, RABAK - MERINGAN AND RABAK - J.AULIA

3.11.4 VOLTAGE VARIATION ON THE 500 KV

3.11.5 VOLTAGE VARIATION AT RABAK SUBSTATION

Rabak11 is Kosti unit lternator busbar, in 11 kV.

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2020 Appendix Stability Study

3.12 SHORT-CIRCUIT AT RABAK ON RABAK - JEBEL AULIA

Event : a 3 phase short-circuit at Rabak end, on the circuit Rabak - Jebel Aulia, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Rabak (to 0 pu) led to a transitory blocking of commutation of the rectifier station at Rabak. The flow on the DC interconnection is transitory reduced to 0, before recovering to its initial value. During the transitory blocking of the DC stations, the capacitors bank remained connected.

For the Egyptian side, the impact on the system and its behaviour is very similar to the case of SC on Rabak - Fula

3.12.1 GENERATORS FREQUENCY VARIATION

2020_IL_CC_Rabak_J.Aulia

GG3 is Gibe III

Gen_440_3 is a group of High Dam

Gen_530_1 is the existing steam turbine in Kurimat

3.12.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

Scot+ Wilson

3.12.4 VOLTAGE VARIATION ON THE 500 KV

3.13 TRIPPING OF THE MAIN UNIT IN EGYPT : ABU KIR 650 MW STEAM TURBINE

The Ethipian and Sudanese system are not affected.

3.13.1 GENERATORS FREQUENCY VARIATION

2020_IL_Trip_G_A.KIR

Gen_441_1 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

3.13.2 POWER FLOW VARIATION ON EGYPT - LIBYA AND EGYPT - JORDAN INTERCONNECTION

3.13.3 VOLTAGE VARIATION

3.13.4 OUTPUT VARIATION OF ABU KIR ST

3.14 TRIPPING OF THE MAIN UNIT IN SUDAN : PORT SUDAN 530 MW STEAM TURBINE

Event : the 670 MVA steam unit of Port-Sudan (the main unit in Sudan) is tripped.

3.14.1 GENERATORS FREQUENCY VARIATION

2020_IL_Trip_P.Sudan

3.14.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

3.14.3 VOLTAGE VARIATION

3.14.4 OUTPUT VARIATION FOR SOME GENERATION UNITS

3.15 TRIPPING OF THE MAIN 2 UNITS IN ETHIOPIA : 2 UNITS OF 212.5 MW IN MANDAYA

3.15.1 GENERATORS FREQUENCY VARIATION

GG3 is Gibe III

3.15.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

3.15.3 VOLTAGE VARIATION

3.15.4 OUTPUT VARIATION FOR SOME GENERATION UNITS

Nile Basin Initiative Eastern Nile Subsidiary Action Program Eastern Nile Technical Regional Office

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2025 Appendix Stability Study

TABLE OF CONTENTS

1	Transie	nt stability analysis hypothesis	7
2	Results	of simulations for 2025 peak load period	9
	2.1 Tri	pping of one of the 2 poles of the DC interconection at Kosti	9
	2.1.1	Generator frequency variation	9
	2.1.2	Power flow variation on ENTRO interconnection	10
	2.1.3	Voltage variation on the 500 kV	12
	2.2 Tri	pping of one of the 2 poles of the DC interconection at Nag Hammadi	14
	2.2.1	Generator frequency variation	14
	2.2.2	Power flow variation	15
	2.2.3	Voltage variation on the 500 kV	16
	2.3 Tr	unsitary blocking of the converter station	
	2.3.1	Blocking of the Kosti ACDC converter station	
	2.3.2	Kosti SVC reactive generation	
	2.3.3	Voltage variation on the 500 kV	20
	2.3.4	Generator frequency variation	
	2.3.5	Power flow variation on ENTRO interconnection	
	24 Sh	art singuit at Kasti an ana of the four Kasti Mandaya singuite	22
	2.4 500	Generator frequency variation	
	2.4.1	Power flow variation on ENTRO interconnection	23 24
	2.4.2	Voltage variation on the 500 kV	24 26
	2.4.5		
	2.5 She	ort-circuit at Mandaya on one of the four Mandaya – Kosti circuits	
	2.5.1	Generator frequency variation	
	2.5.2	Power flow variation on ENTRO interconnection	
	2.5.5	voltage variation on the 500 kV	
	2.6 She	ort-circuit on one of the four 400/500 kV transformers at Mandaya	
	2.6.1	Generator frequency variation	
	2.6.2	Power flow variation on ENTRO interconnection	
	2.6.3	Power flow variation Mandaya 500/400 kV transformers	35
	2.6.4	Voltage variation on the 500 kV	
	2.7 She	ort-circuit at Gedaref, on the 220 kV phase-shift transformer	
	2.7.1	Generator frequency variation	
	2.7.2	Power flow variation on ENTRO interconnection	40
	2.7.3	Voltage variation on the 500 kV	41
	2.8 Sh	ort-circuit at Nag Hammadi side, on one of the two circuits High Dam - Nag Hammadi	
	2.8.1	Generator frequency variation	
	2.8.2	Power flow variation on the 2 circuits Nag Hammadi – High Dam	
	2.8.3	Voltage variation on the 500 kV	45
	2.9 Sh	ort-circuit at Nag Hammadi on NH500 - Sohag circuit	47
	2.9 51	Generator frequency variation	47
	2.9.1	Power flow variation on the circuit High Dam - Nag Hammadi - Assiut	48
	2.9.3	Voltage variation on the 500 kV	
	3 10 07		"
	2.10 Sh	ort-circuit at Nag Hammadi on NH500 - Assiut circuit	
	2.10.1	Generator frequency variation	
	2.10.2	Power now variation on the circuit Hign Dam - Nag Hammadi - Sohag	
	2.10.3	vonage variation on the 500 k v	

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2025 Appendix Stability Study

2.11.1 2.11.2 2.11.3 2.11.4	Reactive generation of the SVC Reactive generation of the High Dam generators Reactive flow over Nag Hammadi Assiut and Nag Hammadi Sohag circuits	55 56 57
2.11.4 2.12 Sh 2.12.1 2.12.2 2.12.3 2.12.4	volatge prome at Nag Hammadi, sonag, Assidt and High Dam. ort-circuit at Mandaya on one of the 3 circuits Mandaya - Ghimbi Generator frequency variation Power flow variation on ENTRO interconnection Power flow variation on Mandaya - Ghimbi Voltage variation on the 500 kV and 400kV substations	59 59 60 61 62
2.13 Sho	ort-circuit at Karadobi on one of the 2 circuits Karadobi - Ghedo	 63
2.13.1	Generator frequency variation	64
2.13.2	Power flow variation on ENTRO interconnection	65
2.13.3	Voltage variation on the 400 kV	66
2.14 Sh	ort-circuit at Gonder 230 kV busbar, on one of the two 230 kV circuits Gonder – Bahir Dar	67
2.14.1	Power flow variation on ENTRO interconnection	67
2.14.2	Power flow variation on Gonder – Bahir Dar 230kV	68
2.14.3	Voltage variation on the 500 kV and 230kV substations	69
2.15 Sho	ort-circuit at Kosti on Kosti - Fula	70
2.15.1	Generator frequency variation	70
2.15.2	Power flow variation on ENTRO interconnection	71
2.15.3	Power flow variation on Kosti - Fula	72
2.15.4	Voltage variation on the 500 kV	73
2.16 Sho	ort-circuit at Kosti on one of the two 500kV Kosti - Meringan	76
2.16.1	Generator frequency variation	76
2.16.2	Power flow variation on ENTRO interconnection	77
2.16.3	Power flow variation on Kosti - Meringan, Kosti - Fula and Kosti - J. Aulia	78
2.16.4	Voltage variation on the 500 kV	79
2.17 Sho	ort-circuit at Kosti on Kosti - Jebel Aulia	81
2.17.1	Generator frequency variation	81
2.17.2	Power flow variation on ENTRO interconnection	82
2.17.3	Power flow variation on Kosti - Jebel Aulia, Kosti – Meringan and Kosti transformer	83
2.17.4	Voltage variation on the 500 kV	84
2.18 Tri	ipping of the 500MVAr SVC at Kosti	86
2.18.1	Reactive generation of the SVC	86
2.18.2	Reactive generation of the generators close to Kosti	87
2.18.3	Reactive flow over one circuit Mandaya Kosti	88
2.18.4	Volatge profile at Kosti and Mandaya 500kV substations	89
2.19 Tr	ipping of the largest unit in Egypt : Abu Kir 650 MW steam turbine	90
2.19.1	Generator frequency variation	90
2.19.2	Mechanical Power variation	91
2.19.3	Nag Hammadi SVC variation	92
2.20 Tr	ipping of two 280MVA units in Mandaya	 93
2.20.1	Generator frequency variation	94
2.20.2	Power flow variation on ENTRO interconnection	95
2.20.3	Mechanical Power variation	96
2.21 Tr	ipping of the largest unit in Sudan : Port-Sudan 670MVA Steam Unit	97
2.21.1	Generator frequency variation	98
2.21.2	Power flow variation on ENTRO interconnection	99
2.21.3	Mechanical Power variation	100

LIST OF TABLES

ABLE 1. LOAD VOLTAGE AND FREQUENCY DEPENDENCY COEFFICIENTS
--

LIST OF FIGURES

FIGURE 1. GENERATOR FREQUENCY VARIATION	9
FIGURE 2. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	. 10
FIGURE 3. VOLTAGE VARIATION ON THE 500 KV	. 12
FIGURE 4. GENERATOR FREQUENCY VARIATION	. 14
FIGURE 5. POWER FLOW VARIATION	. 15
FIGURE 6. VOLTAGE VARIATION ON THE 500 KV	. 16
FIGURE 7. BLOCKING OF THE KOSTI ACDC CONVERTER STATION	. 18
FIGURE 8. KOSTI SVC REACTIVE GENERATION	. 19
FIGURE 9. VOLTAGE VARIATION ON THE 500 KV	. 20
FIGURE 10. GENERATOR FREQUENCY VARIATION	. 21
FIGURE 11. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	. 22
FIGURE 12. GENERATOR FREQUENCY VARIATION	. 23
FIGURE 13. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	. 24
FIGURE 14. VOLTAGE VARIATION ON THE 500 KV	. 26
FIGURE 15. GENERATOR FREQUENCY VARIATION	. 28
FIGURE 16. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	. 29
FIGURE 17. VOLTAGE VARIATION ON THE 500 KV	. 31
FIGURE 18. GENERATOR FREQUENCY VARIATION	. 33
FIGURE 19. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	. 34
FIGURE 20. POWER FLOW VARIATION MANDAYA 500/400 KV TRANSFORMERS.	. 35
FIGURE 21. VOLTAGE VARIATION ON THE 500 KV	36
FIGURE 22. GENERATOR FREQUENCY VARIATION	.39
FIGURE 23. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	. 40
FIGURE 24 VOLTAGE VARIATION ON THE 500 KV	41
FIGURE 25 GENERATOR FREQUENCY VARIATION	43
FIGURE 26. POWER FLOW VARIATION ON THE 2 CIRCUITS NAG HAMMADI – HIGH DAM	44
FIGURE 27. VOLTAGE VARIATION ON THE 500 KV	45
FIGURE 28 GENERATOR FREQUENCY VARIATION	47
FIGURE 29. POWER FLOW VARIATION ON THE CIRCUIT HIGH DAM - NAG HAMMADI - ASSIUT	48
FIGURE 30. VOLTAGE VARIATION ON THE 500 KV	. 40 49
	51
FIGURE 32 POWER FLOW VARIATION ON THE CIRCUIT HIGH DAM - NAG HAMMADI - SOHAG	52
FIGURE 32. VOLTAGE VARIATION ON THE 500 κ V/	53
FIGURE 33. VOLTAGE VARIATION ON THE 300 KV	55
FIGURE 34. REACTIVE GENERATION OF THE SVC	56
FIGURE 35. NEACTIVE GENERATION OF THE HIGH DAM GENERATORS	. 50
FIGURE 30. REACTIVE FLOW OVER INAG HAMMADI ASSIUT AND INAG HAMMADI SOMAG CIRCUTS	. 57
FIGURE 37. VOLATGE PROFILE AT TNAG HAMIMADI, SOMAG, ASSIUT AND THIGH DAMI	. 50
	. 59
FIGURE 39. FOWER FLOW VARIATION ON ENTRO INTERCONNECTION	.00
FIGURE 40. FOWER FLOW VARIATION ON THE 500 KV AND 400KV CURCEATIONS	.01
FIGURE 41. VOLTAGE VARIATION ON THE 300 KV AND 400KV SUBSTATIONS	. 02
FIGURE 42. GENERATOR FREQUENCY VARIATION	. 04
FIGURE 43. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	. 00
FIGURE 44. VOLTAGE VARIATION ON THE 400 KV	. 00
FIGURE 45. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	. 67
FIGURE 40. POWER FLOW VARIATION ON GONDER – BAHIR DAR 230KV	. 68
FIGURE 47. VOLTAGE VARIATION ON THE 500 KV AND 230KV SUBSTATIONS	. 69
FIGURE 48. GENERATOR FREQUENCY VARIATION	. 70
FIGURE 49. POWER FLOW VARIATION ON EN I KU INTERCONNECTION	. /1
FIGURE 5U. POWER FLOW VARIATION ON KOSTI - FULA	. 72

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION **FEASIBILITY STUDY**

M1 – 2025 Appendix Stability Study

FIGURE 51. VOLTAGE VARIATION ON THE 500 KV	73
FIGURE 52. GENERATOR FREQUENCY VARIATION	76
FIGURE 53. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	77
FIGURE 54. POWER FLOW VARIATION ON KOSTI - MERINGAN, KOSTI - FULA AND KOSTI - J. AULIA	78
FIGURE 55. VOLTAGE VARIATION ON THE 500 KV	79
FIGURE 56. GENERATOR FREQUENCY VARIATION	81
FIGURE 57. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	82
FIGURE 58. POWER FLOW VARIATION ON KOSTI - JEBEL AULIA, KOSTI - MERINGAN AND KOSTI TRANSFORMER	83
FIGURE 59. VOLTAGE VARIATION ON THE 500 KV	84
FIGURE 60. REACTIVE GENERATION OF THE SVC	86
FIGURE 61. REACTIVE GENERATION OF THE GENERATORS CLOSE TO KOSTI	87
FIGURE 62. REACTIVE FLOW OVER ONE CIRCUIT MANDAYA KOSTI	88
FIGURE 63. VOLATGE PROFILE AT KOSTI AND MANDAYA 500KV SUBSTATIONS	89
FIGURE 64. GENERATOR FREQUENCY VARIATION	90
FIGURE 65. MECHANICAL POWER VARIATION	91
FIGURE 66. NAG HAMMADI SVC VARIATION	92
FIGURE 67. GENERATOR FREQUENCY VARIATION	94
FIGURE 68. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	95
FIGURE 69. MECHANICAL POWER VARIATION	96
FIGURE 70. GENERATOR FREQUENCY VARIATION	98
FIGURE 71. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	99
FIGURE 72. MECHANICAL POWER VARIATION	100

ABBREVIATIONS AND ACRONYMS

AC	Alternative Current			
CCG	Combined Cycle Gas turbine			
DC	Direct Current			
ENPTPS	Eastern Nile Power Trade Program Study			
EDF	Electricité de France			
EN	Eastern Nile			
ENTRO	Eastern Nile Technical Regional Office			
GEP	Generation Expansion Plan			
HPP	Hydro Power Plant			
HD	High Dam			
HV	High Voltage			
HVDC	High Voltage Direct Current			
NBI	Nile Basin Initiative			
NH	Nag Hammadi			
OHL	Over Head Line			
p.u	Per Unit			
SC	Short Circuit			
ST	Steam Turbine			
SVC	Static Voltage Compensator			
SW	Scott Wilson			
TPP	Thermal Power Plant			

Note : Kosti / Rabak

The location of the HVDC converter station Sudan was modified during the Line Routing study.

Initially located at Rabak (East side of the Nile) in Phase I, the line routing study during Phase II located the interconnection substation in Sudan on the West side of the Nile river at Kosti.

The name used in the simulation was Rabak.

1 TRANSIENT STABILITY ANALYSIS HYPOTHESIS

The volume of spinning reserve was set as followed :

- Libya : 50 MW
- Jordan and Syria : 100 MW
- Egypt : 380 MW (104 MW on hydropower plants + 275 MW on thermal plants)
- Sudan : 350 MW
- Ethiopia : 390 MW (hydropower plant only)

In Egypt, the spinning reserve was sized to avoid the activation of the first step of the automatic under frequency load shedding scheme and to recover an acceptable frequency (49.8Hz) following the tripping of one pole of the DC link.

Load voltage and frequency dependency coefficients

	dP/dV	dP/df	dQ/dV	dQ/df
Egypt	0.83	1.46	4.01	-0.88
Ethiopia	0.94	1.26	3.67	-1.29
Sudan	0.79	1.53	4.14	-0.72

 Table 1. Load voltage and frequency dependency coefficients

Load demand of Libya, Jordan and Syria

The 2025 peak load demand for Libya reached 9 480 MW.

The 2025 peak load demand for Jordan and Syria reached 21 080 MW.

Calculation of the damping magnitude of the power oscillations

The power oscillations evolve according to the formula :

A.e^{$-\alpha t$}.cos($\omega t + \varphi$) with $\omega = 2\pi f_x$

From the curves it is possible to measure the frequency, f_x of the oscillations. (generally a low value close to 0.3Hz or 0.5Hz)

The apparent damping coefficient D of the oscillation mode is equal to :

$$\mathbf{D} = \frac{\alpha}{\sqrt{\alpha^2 + \beta^2}} \quad \text{with } \beta = 2\pi \mathbf{f}$$

and α is like that $e^{-\alpha t} = 0.05$ with *t* is the damping duration.

The international literature concerning the inter-area oscillations, indicates that an inter-area oscillation mode is acceptably damped if the damping coefficient is close to 5% and it is well damped if the damping coefficient is higher than 5%.

According to the above formula, the apparent damping coefficient for the average frequency was estimated from the curves and the results.

2 RESULTS OF SIMULATIONS FOR 2025 PEAK LOAD PERIOD

2.1 TRIPPING OF ONE OF THE 2 POLES OF THE DC INTERCONECTION AT KOSTI

<u>Event :</u> one of the 2 poles was tripped following an internal fault. 300 ms after, half of the capacitor banks of the filters was disconnected at Kosti terminal.

2.1.1 GENERATOR FREQUENCY VARIATION

2.1.2 **POWER FLOW VARIATION ON ENTRO INTERCONNECTION**

2.1.3 VOLTAGE VARIATION ON THE 500 KV

2.2 TRIPPING OF ONE OF THE 2 POLES OF THE DC INTERCONECTION AT NAG HAMMADI

<u>Event :</u> one of the 2 poles was tripped following an internal fault. 300 ms after, half of the capacitor banks of the filters was disconnected at Nag Hammadi terminal.

2.2.1 GENERATOR FREQUENCY VARIATION

2.2.2 POWER FLOW VARIATION

2.2.3 VOLTAGE VARIATION ON THE 500 KV

2.3 TRANSITORY BLOCKING OF THE CONVERTER STATION

Event: A fault on the commutation of the converter at Kosti station or Nag Hammadi station induced a temporary blocking of the converter station.

The power exchange was reduced to zero during 300 ms. After this period, the converter stations operated normally and the power exchange recovered its initial value.

During the blocking, the capacitor banks of the filters remained connected on the system.

2.3.1 BLOCKING OF THE KOSTI ACDC CONVERTER STATION

2.3.2 KOSTI SVC REACTIVE GENERATION

2.3.3 VOLTAGE VARIATION ON THE 500 KV

2.3.4 GENERATOR FREQUENCY VARIATION

2.3.5 **POWER FLOW VARIATION ON ENTRO INTERCONNECTION**

2.4 SHORT-CIRCUIT AT KOSTI ON ONE OF THE FOUR KOSTI - MANDAYA CIRCUITS

<u>Event</u>: a 3 phase short-circuit at Kosti end, on one of the 4 circuits Mandaya - Kosti, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Kosti led to a transitory blocking of commutation of the inverter station at Kosti. The flow on the DC interconnection is transitory reduced to 0, before recovering to its initial value 300 ms after the clearing of the fault.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.4.1 GENERATOR FREQUENCY VARIATION

2.4.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.4.3 VOLTAGE VARIATION ON THE 500 KV

2.5 SHORT-CIRCUIT AT MANDAYA ON ONE OF THE FOUR MANDAYA – KOSTI CIRCUITS

Event : a 3 phase short-circuit at Mandaya end, on one of the 4 circuits Mandaya - Kosti, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Kosti led to a transitory blocking of commutation of the inverter station at Kosti. The flow on the DC interconnection is transitory reduced to 0, before recovering to its initial value 300 ms after the clearing of the fault.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.5.1 **GENERATOR FREQUENCY VARIATION**

2.5.2 **POWER FLOW VARIATION ON ENTRO INTERCONNECTION**

2.5.3 VOLTAGE VARIATION ON THE 500 KV

2.6 SHORT-CIRCUIT ON ONE OF THE FOUR 400/500 KV TRANSFORMERS AT MANDAYA

<u>Event</u> : a 3 phase short-circuit at the 500 kV side on one of the four 500/400 kV transformers at Mandaya, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Kosti close to 0.6 p.u. led to a transitory blocking of commutation of the converter station at Kosti. The flow on the DC interconnection was transitory reduced to 0, before recovering its initial value 300 ms after the clearing of the fault. The capacitors banks of the filters remained connected.

2.6.1 GENERATOR FREQUENCY VARIATION

2.6.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.6.3 POWER FLOW VARIATION MANDAYA 500/400 KV TRANSFORMERS

2.6.4 VOLTAGE VARIATION ON THE 500 KV

2.7 SHORT-CIRCUIT AT GEDAREF, ON THE 220 KV PHASE-SHIFT TRANSFORMER

<u>Event</u>: a 3 phase short-circuit at Gedaref 220 kV end, on the 220 kV phase shift transformer, cleared in 120 ms by the opening of the circuit breakers.

2.7.1 GENERATOR FREQUENCY VARIATION

2.7.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.7.3 VOLTAGE VARIATION ON THE 500 KV

2.8 SHORT-CIRCUIT AT NAG HAMMADI SIDE, ON ONE OF THE TWO CIRCUITS HIGH DAM - NAG HAMMADI

<u>Event :</u> a 3 phase short-circuit at Nag Hammadi end, on one of the 2 circuits High Dam - Nag Hammadi, cleared in 100 ms by the opening of the circuit breakers.

Following the tripping, a transitory blocking of commutation of the inverter station at Nag Hammadi. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.8.1 GENERATOR FREQUENCY VARIATION

2.8.2 POWER FLOW VARIATION ON THE 2 CIRCUITS NAG HAMMADI – HIGH DAM

2.8.3 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2025 Appendix Stability Study

2.9 SHORT-CIRCUIT AT NAG HAMMADI ON NH500 - SOHAG CIRCUIT

<u>Event :</u> a 3 phase short-circuit at Nag Hammadi end, on the circuit Nag Hammadi - Sohag, cleared in 100 ms by the opening of the circuit breakers.

The voltage drop in Nag Hammadi (to 0 pu) led to a transitory blocking of commutation of the inverter station at Nag Hammadi. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

For the Ethiopian and Sudanese side, the impact on the system and its behaviour is very similar to the case of SC on High Dam - Nag Hammadi

2.9.1 GENERATOR FREQUENCY VARIATION

2.9.2 POWER FLOW VARIATION ON THE CIRCUIT HIGH DAM - NAG HAMMADI - ASSIUT

2.9.3 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2025 Appendix Stability Study

2.10 SHORT-CIRCUIT AT NAG HAMMADI ON NH500 - ASSIUT CIRCUIT

<u>Event :</u> a 3 phase short-circuit at Nag Hammadi end, on the circuit Nag Hammadi - Assiut, cleared in 100 ms by the opening of the circuit breakers.

The voltage drop in Nag Hammadi (to 0 pu) led to a transitory blocking of commutation of the inverter station at Nag Hammadi. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

For the Ethiopian and Sudanese side, the impact on the system and its behaviour is very similar to the case of SC on High Dam - Nag Hammadi

2.10.1 GENERATOR FREQUENCY VARIATION

2.10.2 POWER FLOW VARIATION ON THE CIRCUIT HIGH DAM - NAG HAMMADI - SOHAG

Scot+

2.10.3 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2025 Appendix Stability Study

2.11 TRIPPING OF THE 300MVAR SVC AT NAG HAMMADI

Event: The 300MVAr SVC at Nag Hammadi was tripped, it generated 220MVAr.

2.11.1 REACTIVE GENERATION OF THE SVC

2.11.2 REACTIVE GENERATION OF THE HIGH DAM GENERATORS

2.11.3 REACTIVE FLOW OVER NAG HAMMADI ASSIUT AND NAG HAMMADI SOHAG CIRCUITS

2.11.4 VOLATGE PROFILE AT NAG HAMMADI, SOHAG, ASSIUT AND HIGH DAM

2.12 SHORT-CIRCUIT AT MANDAYA ON ONE OF THE 3 CIRCUITS MANDAYA - GHIMBI

Event : a 3 phase short-circuit at Mandaya end, on one of the 3 circuits Mandaya - Ghimbi, cleared in 100 ms by the opening of the circuit breakers.

The voltage drop in Kosti led to a transitory blocking of commutation of the rectifier station at Kosti. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.12.1 **GENERATOR FREQUENCY VARIATION**

2.12.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

Eastern Nile Power Trade Program Study E-S-CIST-DS-08-197

2.12.3 POWER FLOW VARIATION ON MANDAYA - GHIMBI

2.12.4 VOLTAGE VARIATION ON THE 500 KV AND 400KV SUBSTATIONS

2.13 SHORT-CIRCUIT AT KARADOBI ON ONE OF THE 2 CIRCUITS KARADOBI - GHEDO

<u>Event</u> : a 3 phase short-circuit at Karadobi end, on one of the 2 circuits Karadobi - Ghedo, cleared in 100 ms by the opening of the circuit breakers.

Following the fault, the behaviour of the interconnected system was satisfactory, Sudan and Ethiopia operated in synchronism.

The voltage at Kosti remained above 0.9 p.u. therefore the operation of the converter station was satisfactory, there was no blocking of the station. The power exchange on the DC interconnection was kept constant.

The power oscillations on the remaining Karadobi Ghedo circuit were totally damped in 6 seconds. The transient power surge reached 1 400MW. The power flow stabilized at 900MW, below the thermal limit of a circuit equipped with 3 bundle conductors.

The power flows over the 500kV and 200kV AC interconnections were very slightly affected. The power exchange increased up to 20MW over the 220kV interconnection.

The frequency surge of Karadobi unit reached 1.3% (50.67Hz). The system frequency recovered its initial value in 7 seconds.

2.13.1 GENERATOR FREQUENCY VARIATION

2.13.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.13.3 VOLTAGE VARIATION ON THE 400 KV

2.14 SHORT-CIRCUIT AT GONDER 230 KV BUSBAR, ON ONE OF THE TWO 230 KV CIRCUITS GONDER – BAHIR DAR

<u>Event</u> : a 3 phase short-circuit at Gonder end, on one of the two circuits Gonder – Bahir Dar. It was cleared in 100 ms by opening of the two circuit breakers.

2.14.1 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.14.2 POWER FLOW VARIATION ON GONDER – BAHIR DAR 230KV

2.14.3 VOLTAGE VARIATION ON THE 500 KV AND 230KV SUBSTATIONS

2.15 SHORT-CIRCUIT AT KOSTI ON KOSTI - FULA

<u>Event</u> : a 3 phase short-circuit at Kosti end, on one of the 2 circuits Kosti - Fula, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Kosti led to a transitory blocking of commutation of the rectifier station at Kosti. The flow on the DC interconnection was transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.15.1 GENERATOR FREQUENCY VARIATION

2.15.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.15.3 POWER FLOW VARIATION ON KOSTI - FULA

2.15.4 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2025 Appendix Stability Study

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2025 Appendix Stability Study

2.16 SHORT-CIRCUIT AT KOSTI ON ONE OF THE TWO 500KV KOSTI - MERINGAN

Event : a 3 phase short-circuit at Kosti end, on one of the two circuits Kosti - Meringan, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Kosti led to a transitory blocking of commutation of the rectifier station at Kosti. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.16.1 **GENERATOR FREQUENCY VARIATION**

2.16.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.16.3 POWER FLOW VARIATION ON KOSTI - MERINGAN, KOSTI - FULA AND KOSTI - J. AULIA

2.16.4 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2025 Appendix Stability Study

TRANSIENT STABILITY 2025

2.17 SHORT-CIRCUIT AT KOSTI ON KOSTI - JEBEL AULIA

Event : a 3 phase short-circuit at Kosti end, on the circuit Kosti – Jebel Aulia, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Kosti led to a transitory blocking of commutation of the rectifier station at Kosti. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.17.1 **GENERATOR FREQUENCY VARIATION**

TRANSIENT STABILITY 2025

2.17.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.17.4 VOLTAGE VARIATION ON THE 500 KV

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2025 Appendix Stability Study

TRANSIENT STABILITY 2025

2.18 TRIPPING OF THE 500MVAR SVC AT KOSTI

Event: The 500MVAr SVC at Kosti was tripped, it generated 80MVAr.

2.18.1 REACTIVE GENERATION OF THE SVC

TRANSIENT STABILITY 2025

2.18.2 REACTIVE GENERATION OF THE GENERATORS CLOSE TO KOSTI

2.18.3 REACTIVE FLOW OVER ONE CIRCUIT MANDAYA KOSTI

TRANSIENT STABILITY 2025

2.18.4 VOLATGE PROFILE AT KOSTI AND MANDAYA 500KV SUBSTATIONS

2.19 TRIPPING OF THE LARGEST UNIT IN EGYPT : ABU KIR 650 MW STEAM TURBINE

Event : the 765 MVA steam unit of Abu Kir was tripped, it generated 615 MW

Following the tripping of the largest steam unit in operation, the behaviour of the system was satisfactory.

The Egyptian frequency decreased to 49.88 Hz, before recovering to 49.94 Hz. The self regulation of the load was estimated to 143 MW in Egypt interconnected to Libya and Jordan.

The voltage was not significantly affected.

2.19.1 GENERATOR FREQUENCY VARIATION

TRANSIENT STABILITY 2025

2.19.2 MECHANICAL POWER VARIATION

2.19.3 NAG HAMMADI SVC VARIATION

2.20 TRIPPING OF TWO 280MVA UNITS IN MANDAYA

<u>Event</u>: 2 units of Mandaya, the largest units in operation in the Ethiopian system were tripped. Their initial generation amounted 242.85MW.

The final frequency reached 49.94Hz, the reduction of demand amounted to:

- 20MW in Sudan
- 6MW in Ethiopia

The amount of primary reserve delivered in Sudan is equal to the decrease of imported power (294MW minus the reduction of load demand of 20MW):

• Amount of delivered primary reserve 274MW

The amount of primary reserve delivered in Ethiopia is equal to the decrease of generated power (486MW° minus the reduction of power exchange (294MW) and minus the reduction of load demand (6MW):

• Amount of delivered primary reserve 186MW

The variation of transmission losses due to the modification of the unit commitment and the delivery of the primary reserve was neglected to simplify the calculation.

2.20.1 GENERATOR FREQUENCY VARIATION

2.20.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.20.3 MECHANICAL POWER VARIATION

2.21 TRIPPING OF THE LARGEST UNIT IN SUDAN : PORT-SUDAN 670MVA STEAM UNIT

<u>Event</u> : The 670MVA Steam Unit of Port-Sudan, the largest units in operation in the Sudan system was tripped. Its initial generation amounted 579MW.

The final frequency reached 49.92Hz, the reduction of demand amounted to:

- 27MW in Sudan
- 7.5MW in Ethiopia

The amount of primary reserve delivered in Sudan is equal to the decrease of generated power (579MW° minus the increase of imported power (260MW)and minus reduction of load demand (27MW):

• Amount of delivered primary reserve 292MW

The amount of primary reserve delivered in Ethiopia is equal to the increase of the exported minus the reduction of load demand (7.5MW):

• Amount of delivered primary reserve 252.5MW

The variation of transmission losses due to the modification of the unit commitment and the delivery of the primary reserve was neglected to simplify the calculation.

2.21.1 GENERATOR FREQUENCY VARIATION

2.21.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.21.3 MECHANICAL POWER VARIATION

Nile Basin Initiative Eastern Nile Subsidiary Action Program Eastern Nile Technical Regional Office

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2030 Appendix Stability Study

TABLE OF CONTENTS

1	Transi	ent stability analysis hypothesis	7
2	2030 p	eak load situation	9
2	2.1 Tr 2.1.1 2.1.2 2.1.3	ipping of one of the 2 poles of the DC interconection Generators frequency variation Power flow variation on ENTRO interconnection Power flow variation on Nag Hammadi 500 kV circuits	9
	2.1.4 2.1.5	Power flow variation on Egypt Interconnections Voltage variation on the 500 kV	
2	2.2 Sh	ort-circuit at Kosti on one of the 4 Kosti - T.Border circuits	14 14
	2.2.2	Power flow variation on ENTRO interconnection	
	2.2.3	Power flow variation on Nag Hammadi 500 kV circuits	16
	2.2.4	Power flow variation on Egypt Interconnections	17 17
	2.2.0 0.2 Ch	voltage valiation on the 500 kV	17
4	2.3.1	Generators frequency variation	,
	2.3.2	Power flow variation on ENTRO interconnection	
	2.3.3	Voltage variation on the 500 kV	
2	2.4 Sh	ort-circuit at T.Border on one of the 4 T.Border – Mandaya circuits	
	2.4.1	Generators frequency variation	
	2.4.3	Voltage variation on the 500 kV	
2	2.5 Sh	ort-circuit at Mandaya on one of the 4 T.Border – Mandaya circuits	24
	2.5.1	Generators frequency variation	24
	2.5.2	Power flow variation on ENTRO interconnection	
	2.5.5		
2	2.6 Sh	ort-circuit on one of the four 400/500 kV transformers at Mandaya	
	2.6.2	Power flow variation on ENTRO interconnection	
	2.6.3	Power flow variation Mandaya 500/400 kV transformers	
	2.6.4	Voltage variation on the 500 kV	
2	2.7 Sh	ort-circuit at Gedaref, on the 220 kV phase-shift transformer	
	2.7.1	Generators frequency variation	
	2.7.2	Voltage variation on the 500 kV	
2	2.8 Sh	ort-circuit at High Dam side. on one of the 2 circuits High Dam - Nag Hammadi	
	2.8.1	Generators frequency variation	
	2.8.2	Power flow variation on ENTRO interconnection	
	2.8.3	Voltage variation on the 500 kV	
-	2.9 Sh	ort-circuit at Nag Hammadi on Nag Hammadi - High Dam	36
4	2.9.1	Generators frequency variation	
	2.9.2	Power flow variation on ENTRO interconnection	
	2.9.3	Power flow variation on Nag - Hammadi - High Dam	
	2.3.4	VUILAYE VAHALIUH UH LHE JUU KV	

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2030 Appendix Stability Study

2.10 Short-circuit at Nag Hammadi on NH500 - Sohag circuit	
2.10.1 Generators frequency variation	
2.10.2 Power flow variation on ENTRO interconnection	
2.10.3 Power flow variation on the circuit High Dam - Nag Hammadi - Assiut	
2.10.4 Voltage variation on the 500 kV	
2.11 Short-circuit at Mandaya on one of the 3 circuits Mandaya - Ghimbi	
2.11.1 Generators frequency variation	
2.11.2 Power flow variation on ENTRO interconnection	41
2.11.3 Power flow variation on Mandaya - Ghimbi	41
2.11.4 Voltage variation on the 500 kV	
2.12 Short-circuit at Kosti on Kosti - Fula	
2.12.1 Generators frequency variation	
2.12.2 Power flow variation on ENTRO interconnection	
2.12.3 Power flow variation on Kosti - Fula	
2.12.4 Voltage variation on the 500 kV	
2.13 Short-circuit at Kosti on Kosti - Meringan	
2.13.1 Generators frequency variation	
2.13.2 Power flow variation on ENTRO interconnection	
2.13.3 Power flow variation on Kosti - Meringan, Kosti - Fula and Kosti - J. Aulia	
2.13.4 Voltage variation on the 500 kV	
2.14 Short-circuit at Kosti on Kosti - Jebel Aulia	
2.14.1 Generators frequency variation	
2.14.2 Power flow variation on ENTRO interconnection	
2.14.3 Power flow variation on Kosti - Jebel Aulia and Kosti - Meringan	
2.14.4 Voltage variation on the 500 kV	
2.15 Tripping of the main unit in Egypt : Sidi Krir 765 MVA steam turbine	
2.15.1 Generators frequency variation	
2.15.2 Power flow variation on Egypt - Libya and Egypt - Jordan interconnection	53
2.15.3 Voltage variation	53
2.15.4 Output variation of some generation units	
2.16 Tripping of the main unit in Sudan : Port Sudan 670 MVA steam turbine	
2.16.1 Generators frequency variation	55
2.16.2 Power flow variation on ENTRO interconnection	
2.16.3 Voltage variation	
2.16.4 Output variation for some generation units	
2.17 Tripping of the main 2 units in Ethiopia : 2 units of 212.5 MW in Mandaya	
2.17.1 Generators frequency variation	
2.17.2 Power flow variation on ENTRO interconnection	59
2.17.3 Voltage variation	
2.17.4 Output variation for some generation units	60

LIST OF TABLES

	7
TABLE T. LUAD VULTAGE AND FREQUENCT DEPENDENCT COEFFICIENTS	

LIST OF FIGURES

FIGURE 1. GENERATORS FREQUENCY VARIATION	9
FIGURE 2. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	
FIGURE 3 POWER FLOW VARIATION ON NAG HAMMADI 500 KV CIRCUITS	11
FIGURE 4 POWER FLOW VARIATION ON FGYPT INTERCONNECTIONS	12
FIGURE 5 VOLTAGE VARIATION ON THE 500 KV	13
FIGURE 6 GENERATORS FREQUENCY VARIATION	14
FIGURE 7. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	15
FIGURE 8. POWER FLOW VARIATION ON NAG HAMMADI 500 KV CIPCUITS	10
FIGURE 9. POWER FLOW VARIATION ON FGYPT INTERCONNECTIONS	
FIGURE 0.1 OWERTEOW VARIATION ON THE 500 KV	
FIGURE 11 GENERATORS FREQUENCY VARIATION	19
	20
FIGURE 12. YOU TAGE VARIATION ON THE 500 KV	20
FIGURE 14. GENERATORS ERECTION ON THE 300 RV	20
	21
FIGURE 15.1 OWERTEOW VARIATION ON ENTRY INTERCONNECTION	22
FIGURE 17. CENEDATORS EDECLIENCY VARIATION	23
FIGURE 17. GENERATORS FREQUENCE VARIATION	24
FIGURE 10. FOWER FLOW VARIATION ON EINTRO INTERCONNECTION	20
FIGURE 19. VOLTAGE VARIATION ON THE 500 KV	20
	21
FIGURE 21. FOWER FLOW VARIATION ON ENTRO INTERCONNECTION	20
FIGURE 22. FOWER FLOW VARIATION INIANDATA 300/400 KV TRAINSFORMERS	20
FIGURE 23. VOLTAGE VARIATION ON THE 300 KV	29
FIGURE 24. GENERATORS FREQUENCY VARIATION	30
FIGURE 23. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	JI
FIGURE 20. VOLTAGE VARIATION ON THE DUUKV	JI
FIGURE 27. GENERATORS FREQUENCY VARIATION	JZ
FIGURE 20. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	აა ა
FIGURE 29. POWER FLOW VARIATION ON THE FOOL //	34
FIGURE 30. VOLTAGE VARIATION ON THE 300 KV	30
FIGURE 31. GENERATORS FREQUENCY VARIATION	30
FIGURE 32. POWER FLOW VARIATION ON ENTRUINTERCONNECTION	31
FIGURE 33. POWER FLOW VARIATION ON INAG - HAMMADI - HIGH DAM	31
FIGURE 34. VOLTAGE VARIATION ON THE 500 KV	37
FIGURE 33. GENERATORS FREQUENCY VARIATION	30
FIGURE 30. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	38
FIGURE 37. POWER FLOW VARIATION ON THE CIRCUIT HIGH DAM - NAG HAMMADI - ASSIUT	39
FIGURE 38. VOLTAGE VARIATION ON THE DUUKV	39
FIGURE 39. GENERATORS FREQUENCY VARIATION	40
FIGURE 40. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	41
FIGURE 41. POWER FLOW VARIATION ON IMANDAYA - GHIMBI	41
FIGURE 42. VOLTAGE VARIATION ON THE DUUKV	42
FIGURE 43. GENERATORS FREQUENCY VARIATION	43
FIGURE 44. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	44
FIGURE 43. FOWER FLOW VARIATION ON THE 500 1/1/	44
	40
	40
FIGURE 40. FOWER FLOW VARIATION ON ENTRO INTERCONNECTION	41
FIGURE 49. FOWER FLOW VARIATION ON NOSTI-IVIERINGAN, NOSTI-FULA AND NOSTI-J. AULIA	41
FIGURE DU. VOLTAGE VARIATION ON THE DUUKV	40
	49

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY

M1 – 2030 Appendix Stability Study

FIGURE 52. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	50
FIGURE 53. POWER FLOW VARIATION ON KOSTI - JEBEL AULIA AND KOSTI - MERINGAN	50
FIGURE 54. VOLTAGE VARIATION ON THE 500 KV	51
FIGURE 55. GENERATORS FREQUENCY VARIATION	52
FIGURE 56. POWER FLOW VARIATION ON EGYPT - LIBYA AND EGYPT - JORDAN INTERCONNECTION	53
FIGURE 57. VOLTAGE VARIATION	53
FIGURE 58. OUTPUT VARIATION OF SOME GENERATION UNITS	54
FIGURE 59. GENERATORS FREQUENCY VARIATION	55
FIGURE 60. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	56
FIGURE 61. VOLTAGE VARIATION	56
FIGURE 62. OUTPUT VARIATION FOR SOME GENERATION UNITS	57
FIGURE 63. GENERATORS FREQUENCY VARIATION	58
FIGURE 64. POWER FLOW VARIATION ON ENTRO INTERCONNECTION	59
FIGURE 65. VOLTAGE VARIATION	59
FIGURE 66. OUTPUT VARIATION FOR SOME GENERATION UNITS	60

ABBREVIATIONS AND ACRONYMS

AC	Alternative Current
CCG	Combined Cycle Gas turbine
DC	Direct Current
ENPTPS	Eastern Nile Power Trade Program Study
EDF	Electricité de France
EN	Eastern Nile
ENTRO	Eastern Nile Technical Regional Office
GEP	Generation Expansion Plan
HPP	Hydro Power Plant
HD	High Dam
HV	High Voltage
HVDC	High Voltage Direct Current
NBI	Nile Basin Initiative
NH	Nag Hammadi
OHL	Over Head Line
p.u	Per Unit
SC	Short Circuit
ST	Steam Turbine
SVC	Static Voltage Compensator
SW	Scott Wilson
TPP	Thermal Power Plant

Note : Kosti / Rabak

The location of the interconnection in Sudan was modified during the Line Routing study.

Initially located at Rabak (East side of the Nile) in Phase I, the line routing study (during Phase II) located the interconnection substation in Sudan on the West side of the Nile river at Kosti,

The name used in the simulation was Rabak.

1 TRANSIENT STABILITY ANALYSIS HYPOTHESIS

The volume of spinning reserve set as followed :

- Libya : 50 MW
- Jordan and Syria : 100 MW
- Egypt : 404 MW (104 MW on hydropower plants + 300 MW on thermal plants)
- Sudan : 349 MW
- Ethiopia : 304 MW (hydropower plant only)

	dP/dV	dP/df	dQ/dV	dQ/df
Egypt	0.83	1.46	4.01	-0.88
Ethiopia	0.94	1.26	3.67	-1.29
Sudan	0.79	1.53	4.14	-0.72

 Table 1: Load voltage and frequency dependency coefficients

Load of Libya, Jordan and Syria

The 2030 peak load forecast for Libya reached 10 990 MW.

The 2030 peak load forecast for Jordan and Syria reached 23 550 MW.

Scot

Wilson

Calculation of the damping magnitude of the power oscillations

The power oscillations evolve according to the formula :

A.e^{$-\alpha t$}.cos($\omega t + \varphi$) with $\omega = 2\pi f_x$

From the curves it is possible to measure the frequency, f_x of the oscillations. (generally a low value close to 0.3Hz or 0.5Hz)

The apparent damping coefficient D of the oscillation mode is equal to :

$$D = \frac{\alpha}{\sqrt{\alpha^2 + \beta^2}} \quad \text{with } \beta = 2\pi f$$

and α is like that $e^{-\alpha t}=0.05$ with *t* is the damping duration.

The international literature concerning the inter-area oscillations, indicates that an inter-area oscillation mode is acceptably damped if the damping coefficient is close to 5% and it is well damped if the damping coefficient is higher than 5%.

According to the above formula, the apparent damping coefficient for the average frequency was estimated from the curves and the results.

2 2030 PEAK LOAD SITUATION

2.1 TRIPPING OF ONE OF THE 2 POLES OF THE DC INTERCONNECTION

<u>Event :</u> one of the 2 poles was tripped following an internal fault. 300 ms after, half of the capacitor banks of each HVDC substations (NH and Kosti) were disconnected.

2.1.1 GENERATORS FREQUENCY VARIATION

GG3 is Gibe 3

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2030 Appendix Stability Study

2.1.2 POWER FLOW VARIATION ON INTERCONNECTION

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2030 Appendix Stability Study

2.1.3 POWER FLOW VARIATION ON NAG HAMMADI 500 KV CIRCUITS

700 600 Puissance active (Megawatts) 500 400 300 200 100 0 -100 -200 -300 2 7 9 10 11 12 13 14 15 17 18 19 20 21 0 1 3 4 5 6 8 16 Temps (secondes) - S_TAB_S_AQAB - SALO_TOBR221 SALOM_TOBRK500

2.1.4 POWER FLOW VARIATION ON EGYPT INTERCONNECTIONS

1.101 1.096 1.091 Tension (per unit, Base = 500 Kilovolts) 1.086 1.081 1.076 1.071 1.066 1.061 1.056 1.051 1.046 1.041 1.036 2 18 20 21 0 5 6 9 10 11 12 13 14 15 16 17 19 1 3 4 7 8 Temps (secondes) - 2RABAK81 - 1MANDAS81 - 1T.BORDES81

2.1.5 VOLTAGE VARIATION ON THE 500 KV

2.2 SHORT-CIRCUIT AT KOSTI ON ONE OF THE 4 KOSTI - T.BORDER CIRCUITS

<u>Event</u>: a 3 phase short-circuit at Kosti end, on one of the 4 circuits T.Border - Kosti, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Kosti (0 pu) led to a transitory blocking of commutation of the inverter station at Kosti. The flow on the DC interconnection is transitory reduced to 0, before recovering its initial value 300 ms after the tripping of the line.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.2.1 GENERATORS FREQUENCY VARIATION

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

2.2.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.2.3 POWER FLOW VARIATION ON NAG HAMMADI 500 KV CIRCUITS

2.2.4 POWER FLOW VARIATION ON EGYPT INTERCONNECTIONS

2.2.5 VOLTAGE VARIATION ON THE 500 KV

2.3 SHORT-CIRCUIT AT BORDER ON ONE OF THE 4 T.BORDER – KOSTI CIRCUITS

<u>Event</u>: a 3 phase short-circuit at Border end, on one of the 4 circuits T.Border - Kosti, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Kosti (0.45 pu) led to a transitory blocking of commutation of the inverter station at Kosti. The flow on the DC interconnection is transitory reduced to 0, before recovering to its initial value 300 ms after the clearing of the fault.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.3.1 GENERATORS FREQUENCY VARIATION

2.3.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.3.3 VOLTAGE VARIATION ON THE 500 KV

2.4 SHORT-CIRCUIT AT T.BORDER ON ONE OF THE 4 T.BORDER – MANDAYA CIRCUITS

<u>Event</u> : a 3 phase short-circuit at Border end, on one of the 4 circuits T.Border - Mandaya, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Kosti (0.44 pu) led to a transitory blocking of commutation of the inverter station at Kosti. The flow on the DC interconnection is transitory reduced to 0, before recovering to its initial value 300 ms after the clearing of the fault.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.4.1 GENERATORS FREQUENCY VARIATION

2.4.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.4.3 VOLTAGE VARIATION ON THE 500 KV

2.5 SHORT-CIRCUIT AT MANDAYA ON ONE OF THE 4 T.BORDER – MANDAYA CIRCUITS

<u>Event</u>: a 3 phase short-circuit at Mandaya end, on one of the 4 circuits T.Border - Mandaya, cleared in 120 ms by the opening of the circuit breakers.

The voltage in Kosti reached 0.64 p.u. There was no transitory blocking of commutation of the inverter station at Kosti.

2.5.1 GENERATORS FREQUENCY VARIATION

2.5.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.5.3 VOLTAGE VARIATION ON THE 500 KV

2.6 SHORT-CIRCUIT ON ONE OF THE FOUR 400/500 KV TRANSFORMERS AT MANDAYA

<u>Event</u> : a 3 phase short-circuit at the 500 kV side on one of the four 500/400 kV transformers at Mandaya, cleared in 120 ms by the opening of the circuit breakers.

The voltage in Kosti reached 0.64 p.u. There was no transitory blocking of commutation of the inverter station at Kosti.

2.6.1 GENERATORS FREQUENCY VARIATION

2.6.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.6.3 POWER FLOW VARIATION MANDAYA 500/400 KV TRANSFORMERS

2.6.4 VOLTAGE VARIATION ON THE 500 KV

2.7 SHORT-CIRCUIT AT GEDAREF, ON THE 220 KV PHASE-SHIFT TRANSFORMER

<u>Event</u>: a 3 phase short-circuit at Gedaref 220 kV end, on the 220 kV phase shift transformer, cleared in 120 ms by the opening of the circuit breakers.

2.7.1 GENERATORS FREQUENCY VARIATION

2.7.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.7.3 VOLTAGE VARIATION ON THE 500 KV

2.8 SHORT-CIRCUIT AT HIGH DAM SIDE, ON ONE OF THE 2 CIRCUITS HIGH DAM - NAG HAMMADI

<u>Event</u> : a 3 phase short-circuit at High Dam end, on one of the 2 circuits High Dam - Nag Hammadi, cleared in 100 ms by the opening of the circuit breakers.

The voltage drop in Nag Hammadi (0.4 p.u.) led to a transitory blocking of commutation of the inverter station at Nag Hammadi. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.8.1 GENERATORS FREQUENCY VARIATION

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

2.8.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.8.3 POWER FLOW VARIATION ON HIGH DAM - NAG HAMMADI - ASSIUT

2.8.4 VOLTAGE VARIATION ON THE 500 KV

2.9 SHORT-CIRCUIT AT NAG HAMMADI ON NAG HAMMADI - HIGH DAM

<u>Event :</u> a 3 phase short-circuit at Nag Hammadi end, on one of the 2 circuits High Dam - Nag Hammadi, cleared in 100 ms by the opening of the circuit breakers.

The voltage drop in Nag Hammadi (to 0 pu) led to a transitory blocking of commutation of the inverter station at Nag Hammadi. The flow on the DC interconnection is transitory reduced to 0, The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

For the Ethiopian and Sudanese side, the impact on the system and its behaviour is very similar to the case of CC on High Dam - Nag Hammadi, at High Dam.

2.9.1 GENERATORS FREQUENCY VARIATION

2.9.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

For power flow variation on Ethiopia - Sudan interconnection and on the DC interconnection between Sudan and Egypt, the situation is very similar to the case with the SC on High Dam - Nag Hammadi.

2.9.3 POWER FLOW VARIATION ON NAG - HAMMADI - HIGH DAM

2.9.4 VOLTAGE VARIATION ON THE 500 KV

Eastern Nile Power Trade Program Study E-S-CIST-DS-08-215

2.10 SHORT-CIRCUIT AT NAG HAMMADI ON NH500 - SOHAG CIRCUIT

<u>Event</u> : a 3 phase short-circuit at Nag Hammadi end, on the circuit Nag Hammadi - Sohag, cleared in 100 ms by the opening of the circuit breakers.

The voltage drop in Nag Hammadi (to 0 pu) led to a transitory blocking of commutation of the inverter station at Nag Hammadi. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

For the Ethiopian and Sudanese side, the impact on the system and its behaviour is very similar to the case of SC on High Dam - Nag Hammadi

2.10.1 GENERATORS FREQUENCY VARIATION

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

2.10.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

For power flow variation on Ethiopia - Sudan interconnection and on the DC interconnection between Sudan and Egypt, the situation is very similar to the case with the SC on High Dam - Nag Hammadi.

2.10.3 POWER FLOW VARIATION ON THE CIRCUIT HIGH DAM - NAG HAMMADI - ASSIUT

2.10.4 VOLTAGE VARIATION ON THE 500 KV

2.11 SHORT-CIRCUIT AT MANDAYA ON ONE OF THE 3 CIRCUITS MANDAYA - GHIMBI

<u>Event :</u> a 3 phase short-circuit at Mandaya end, on one of the 3 circuits Mandaya - Ghimbi, cleared in 100 ms by the opening of the circuit breakers.

The voltage in Kosti reached 0.74 p.u. There was no transitory blocking of commutation of the inverter station at Kosti.

2.11.1 GENERATORS FREQUENCY VARIATION

2.11.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.11.3 POWER FLOW VARIATION ON MANDAYA - GHIMBI

2.11.4 VOLTAGE VARIATION ON THE 500 KV

2.12 SHORT-CIRCUIT AT KOSTI ON KOSTI - FULA

<u>Event</u> : a 3 phase short-circuit at Kosti end, on one of the 2 circuits Kosti - Fula, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Kosti (to 0 pu) led to a transitory blocking of commutation of the rectifier station at Kosti. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

2.12.1 GENERATORS FREQUENCY VARIATION

GG3 is Gibe III

Gen_440_3 is a group of High Dam Gen_530 is the existing steam turbine in Kurimat

2.12.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.12.3 POWER FLOW VARIATION ON KOSTI - FULA

2.12.4 VOLTAGE VARIATION ON THE 500 KV

2.13 SHORT-CIRCUIT AT KOSTI ON KOSTI - MERINGAN

<u>Event</u>: a 3 phase short-circuit at Kosti end, on the circuit Kosti - Meringan, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Kosti (to 0 pu) led to a transitory blocking of commutation of the rectifier station at Kosti. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

For the Egyptian side, the impact on the system and its behaviour is very similar to the case of SC on Kosti - Fula

2.13.1 GENERATORS FREQUENCY VARIATION

2.13.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.13.3 POWER FLOW VARIATION ON KOSTI - MERINGAN, KOSTI - FULA AND KOSTI - J. AULIA

2.13.4 VOLTAGE VARIATION ON THE 500 KV

2.14 SHORT-CIRCUIT AT KOSTI ON KOSTI - JEBEL AULIA

<u>Event</u>: a 3 phase short-circuit at Kosti end, on the circuit Kosti – Jebel Aulia, cleared in 120 ms by the opening of the circuit breakers.

The voltage drop in Kosti (to 0 pu) led to a transitory blocking of commutation of the rectifier station at Kosti. The flow on the DC interconnection is transitory reduced to 0, before starting, 300 ms after the voltage return, its recovery to its initial value.

During the transitory blocking of the DC stations, the capacitors bank remained connected.

For the Egyptian side, the impact on the system and its behaviour is very similar to the case of SC on Kosti - Fula.

2.14.1 GENERATORS FREQUENCY VARIATION

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2030 Appendix Stability Study

2.14.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.14.3 POWER FLOW VARIATION ON KOSTI - JEBEL AULIA AND KOSTI - MERINGAN

2.14.4 VOLTAGE VARIATION ON THE 500 KV

2.15 TRIPPING OF THE MAIN UNIT IN EGYPT : SIDI KRIR 765 MVA STEAM TURBINE

2.15.1 GENERATORS FREQUENCY VARIATION

Gen_440_3 is a group of High Dam Gen_530_1 is group 1 of Kurimat existing steam

2.15.2 POWER FLOW VARIATION ON EGYPT - LIBYA AND EGYPT - JORDAN INTERCONNECTION

2.15.3 VOLTAGE VARIATION

2.15.4 **OUTPUT VARIATION OF SOME GENERATION UNITS**

2.16 TRIP PING OF THE MAIN UNIT IN SUDAN : PORT SUDAN 670 MVA STEAM TURBINE

Event : the 670 MVA steam unit of Port-Sudan (the main unit in Sudan) is tripped.

2.16.1 GENERATORS FREQUENCY VARIATION

GG3 is Gibe III

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2030 Appendix Stability Study

2.16.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.16.3 VOLTAGE VARIATION

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION **FEASIBILITY STUDY**

M1 – 2030 Appendix Stability Study

2.16.4 **OUTPUT VARIATION FOR SOME GENERATION UNITS**

2.17 TRIPPING OF THE MAIN 2 UNITS IN ETHIOPIA : 2 UNITS OF 212.5 MW IN MANDAYA

2.17.1 GENERATORS FREQUENCY VARIATION

GG3 is Gibe III

EASTERN NILE POWER TRADE PROGRAM STUDY PHASE II: REGIONAL POWER INTERCONNECTION FEASIBILITY STUDY M1 – 2030 Appendix Stability Study

2.17.2 POWER FLOW VARIATION ON ENTRO INTERCONNECTION

2.17.3 VOLTAGE VARIATION

2.17.4 OUTPUT VARIATION FOR SOME GENERATION UNITS