
EASTERN NILE POWER TRADE PROGRAM STUDY

EDF – Generation and Engineering
Division
73 373
Le Bourget du Lac Cedex
France
Tel: +33-4-79 60 60 60
Fax: +33-4-79 60 62 35
eMail: pierre.brun@edf.fr
http://www.edf.fr

AfDB

MARKET AND POWER TRADE ASSESSMENT

Scott Wilson
Kanthack House, Station Road,
Ashford, Kent TN 23 1 PP
England
Tel: +44 (0) 1233 658200

Fax: +44 (0) 1233 658209 eMail: alan.bates@scottwilson.com http://www.scottwilson.com

with participation of:

- EPS (Egypt)
- Tropics (Ethiopia)
- YAM (Sudan)

VOL 1 EXECUTIVE SUMMARY

FINAL MAIN REPORT

30 April 2007

Funded by African development Bank - Client: ENTRO (Eastern Nile Technical Regional Office)

Vol 1: Executive Summary

TABLE OF CONTENTS

1. EXC	CECUTIVE SUMMARY	7
1.1 EG	GYPT	7
1.1.1	Egyptian Utility	
1.1.2	Current demand and generation supply	
1.1.3	Existing transmission system and power trade	8
1.2 E	ГНІОРІА	
1.2.1	Ethiopian utility	8
1.2.2	Current generation supply	9
1.2.3	Committed Power projects	
1.2.4	Existing transmission system and power trade	
1.3 SU	JDAN	11
1.3.1	Sudanese utility	
1.3.2	Current generation supply	
1.3.3	Committed power projects	
1.3.4	Existing transmission system and power trade	
2. ORG	GANISATION OF MODULE 2 REPORT	13

Vol 1: Executive Summary

PHYSICAL UNITS AND CONVERSION FACTORS

bbl barrel (1t = 7.3 bbl)

cal calorie (1 cal = 4.1868 J)

Gcal Giga calorie

GWh Gigawatt-hour

h hour

km kilometer

km² square kilometer

kW kilo Watt

kWh kilo Watt hour (1 kWh = 3.6 MJ)

MBtu Million British Thermal Units (= 1 055 MJ = 252 kCal)

One cubic foot of natural gas produces approximately 1,000 BTU

MJ Million Joule (= $0.948.10^{-3}$ Mbtu = 238.8 kCal)

MW Mega Watt

m meter

m³/d cubic meter per day

mm millimeter

mm³ million cubic meter

Nm³ Normal cubic meter, i.e. measured under normal conditions, i.e. 0°C and 1013 mbar

(1 Nm³ = 1.057 m³ measured under standard conditions, i.e. 15°C and 1013 mbar)

t ton

Toe tons of oil equivalent

Tcf ton cubic feet

°C Degrees Celsius

General Conversion Factors for Energy

То:	TJ	Gcal	Mtoe	MBtu	GWh
From:	multiply by:				
TJ	1	238.8	2.388 x 10 ⁻⁵	947.8	0.2778
Gcal	4.1868 x 10 ⁻³	1	10 ⁻⁷	3.968	1.163 x 10 ⁻³
Mtoe	4.1868 x 10 ⁴	10 ⁷	1	3.968 x 10 ⁷	11630
MBtu	1.0551 x 10 ⁻³	0.252	2.52 x 10 ⁻⁸	1	2.931 x 10 ⁻⁴
GWh	3.6	860	8.6 x 10 ⁻⁵	3412	1

Vol 1: Executive Summary

ABBREVIATIONS AND ACRONYMS

ADB African Development Bank
ADF African Development Fund

CC Combined Cycle

CCGT Combined Cycle Gas Turbine

CIDA Canadian International Development Agency

CT Combustion Turbine

DANIDA Danish Development Assistance

DFID Department for International Development (UK)

DIDC Department for International Development Cooperation (GoF)

DSA Daily Subsistence Allowance

EEHC Egyptian Electricity Holding Company
EEPCO Ethiopian Electric Power Corporation

EHV Extra High Voltage

EHVAC Extra High Voltage Alternating Current
EIA Environmental Impact Assessment
EIRR Economic Internal Rate of Return

EN Eastern Nile

ENCOM Eastern Nile Council of Ministers

ENSAP Eastern Nile Subsidiary Action Program

ENSAPT Eastern Nile Subsidiary Action Program Team

ENTRO Eastern Nile Technical Regional Office

ENTRO PCU Eastern Nile Technical Regional Office Power Coordination Unit

FIRR Financial Internal Rate of Return
GEP Generation Expansion Plan
GTZ German Technical Co-operation

HPP Hydro Power Plant

HFO Heavy fuel oil
HV High Voltage

HVDC High Voltage Direct Current

ICCON International Consortium for Cooperation on the Nile

ICS Interconnected System

IDEN Integrated Development of the Eastern Nile

IDO Industrial Diesel Oil

IMF International Monetary Fund

JICA Japanese International Co-operation Agency

JMP Joint Multipurpose Project
LNG Liquefied Natural Gas
LOLP Loss of Load Probability

Vol 1: Executive Summary

LPG Liquefied Petroleum Gas
LRFO Light Residuel Fuel Oil

MENA Middle East, North Africa Countries

MIWR Ministry of Irrigation & Water Resources (Sudan)

MWR Ministry of Water Resources (Ethiopia)

MWRI Ministry of Water Resources and Irrigation (Egypt)

MSD Medium Speed Diesel (TPP)

NBI Nile Basin Initiative

NEC National Electricity Corporation (Sudan)

NECC National Electricity Control Centre (Egypt)

NELCOM Nile Equatorial Lake Council of Ministers

NELSAP Nile Equatorial Lake Subsidiary Action Program

NG Natural Gas

NGO Non Governmental Organization
NORAD Norwegian Aid Development

NPV Net Present Value

O&M Operations and Maintenance
OCGT Open Cycle Gas Turbine

OPEC Organization of the Petroleum Exporting Countries

PBP Pay Back Period

PHRD Policy & Human Resource Development Fund

PIU Project Implementation Unit

PRSP Poverty Reduction Strategy Paper

RCC Regional Electricity Control Centre (Egypt)

RE Rural Electrification

SAPP Southern Africa Power Pool

SIDA Swedish International Development Agency

SSD Slow speed diesel (TPP)
STPP Steam Turbine Power Plant
STS Senior Technical Specialist
TAF Technical Assistant Fund
TPP Thermal Power Plant

UA Unit of Account

UNDP United Nations Development Program

WB World Bank

Vol 1: Executive Summary

LIST OF TABLES

Table 1.2-1 - Total installed capacity in Egypt in 2006	7
Table 2.2-1 - Existing Ethiopian power plants	g
Table 2.3-1 - Ethiopian Committed Hydropower Projects	10
Table 3.2-1 - Existing Sudanese power plants	12

1. EXCECUTIVE SUMMARY

1.1 EGYPT

Egypt occupies the north-eastern corner of the continent of Africa, including the Sinai Peninsula, with a population of about 69.997 millions (2005), 43% in urban areas and 57% in rural areas. The growth rate of population is currently 1.96% (2006).

The economy of the country has developed in the last years with an annual GDP rate of 5%, pushed up by a significant production of petroleum products, electricity developments, and industrialization.

Egypt has a per capita electric energy consumption of 1 350 kWh (2001/2002). Access to electricity is high, around 98%, with negligible isolated systems.

Environmental improvements can be notice by the rate of CO₂ production in Egypt. It has been reduced from about 2.8 tons of CO₂ per Toe in 1981/1982 to about 2.5 in the year 2001/2002. This is because of the increase of the use of natural gas in the electric energy production.

1.1.1 EGYPTIAN UTILITY

Egyptian electric company is currently comprised of nine regional electricity distribution companies, five regional electricity generation companies, one electricity transmission companies. All these companies are blended in a Holding company, the Egyptian Electricity Holding Company (EEHC). Different authorities, such as New & Renewable Energy and Hydro Power, are directly linked to the Ministry of Electricity & Energy.

1.1.2 CURRENT DEMAND AND GENERATION SUPPLY

In Egypt, peak demand increased from 5 400 MW (1985/1986) to 17 300 MW (2005/2006). In the same period, energy generated increased from 32 TWh to 108 TWh, with a growth rate of 7% in the last ten years.

The total installed capacity in 2006 is 20 508 MW, with 17 543 MW of thermal plants, 225 MW of wind farms, and 2 740 MW of hydropower (4 plants).

Installed Capacity (MW)	ST	CCGT	OCGT	WIND	HYDRO	Total
Cairo	2270	1485	600			4355
West Delta	3330	1224	837			5391
East Delta	3991	1409	453	225		6078
Upper Egypt	1944					1944
Hydro					2740	2740
Total	11535	4118	1890	225	2740	20508
Installed Capacity (%)	56%	20%	9%	1%	13%	

Table 1.1-1 - Total installed capacity in Egypt in 2006

Vol 1: Executive Summary

One hydro, two thermal plants, and two wind farms are committed:

- ✓ The New Naga-Hammadi 64 MW and 460 GWh/year is planned to operate in 2008/2009
- √ Talkha 750 MW CC (NG/HFO) in East Delta is planned to operate in 2007/2008
- ✓ Kurimat (2) 750 MW CC (NG/HFO) in Upper Egypt is planned to operate in 2007/2008
- ✓ Zafarana / Gabal El-Zait 55 MW is planned to operate in 2006/2007
- ✓ Zafarana / Gabal El-Zait 150 MW is planned to operate in 2007/2008

In the Egyptian hydro system, irrigation is the priority, the power production is only a by-product. The Water Resources and Irrigation Ministry defines the daily discharges in power plants and send this information to NECC every week.

1.1.3 EXISTING TRANSMISSION SYSTEM AND POWER TRADE

Egypt is interconnected with Libya and Jordan. These interconnections are used for emergency situations and for power trade between Egypt and Jordan. Exports and imports measured from 2003 to 2005 represented less than 1% of total Egyptian electrical generation, but 20% of Jordanian generation. An export balance of 20 GWh to Lybia and of 680 GWh to Jordan were measured in 2004/2005.

The existing transmission system is equipped with a double circuit 500 kV backbone along the Nile river, from High Dam (2 100 MW) to Cairo (main load centre), and a single circuit (500 KV) from Cairo to the interconnection with Jordan. A 132 kV and 220 kV circuit follows the 500 kV backbone along the Nile river. The delta zone is supplied with a meshed 220 kV network, and extends towards west to Libya with a double circuit interconnection. An extension of the 500 kV network is currently under construction from Cairo 500 to Sidi Krir in West Delta. It is also the first milestone to reinforcement of the interconnection with Libya in 500/400 kV.

1.2 ETHIOPIA

Ethiopia located in the Eastern Africa, has a population of about 75 million inhabitants. 16% of the people are urban. The growth rate of population is currently 2.8%.

The economy of the country, one of the poorest in the world, is not in line with its endowed natural resources. These resources include natural gas, coal, geothermal, considerable hydroelectric power potential, very large livestock population and extensive irrigation potential.

Ethiopia has one of the lowest levels of energy consumption per capita in the world at 28 kWh. Access to electricity is considered to be 17% of population at present.

1.2.1 ETHIOPIAN UTILITY

Ethiopian Electric Power Corporation (EEPCO) is responsible for generation, transmission and distribution of the interconnected system (ISC) as well as some isolated or self contained system (SCS). The current trend for development of generation using IPP (Independent Power Producers) which entitles EEPCO to buy generated power at negotiated rates is also encouraged.

Vol 1: Executive Summary

1.2.2 CURRENT GENERATION SUPPLY

The Interconnected System (ICS) has a total installed capacity of 766,9 MW (end of 2006) including 96,3 MW of Diesel plants at Dire Dawa, Awash, and Kaliti, and a Geothermal plant at Aluto-Langano.

The existing thermal plants in the ICS (end of 2006) are as follows:

Power Plants	Plant Type	Installed capacity (MW)
Dire Dawa Diesel	Diesel	38
Awash 7 Kilo Diesel	Diesel	27
Kaliti Diesel	Diesel	12
Others	Diesel	12
Aluto Geothermal*	Geothermal	7,3
Total Thermal Power Plant (ICS)		96,3 MW
Gigel Gibe I (in 2004)	Hydro	192
		(with 3 units)
Maleka Wakana (in 1988)	Hydro	153
Finchaa (1973-2003)	Hydro	134
		(with 4 units)
Tis Abay I (in 1964)	Hydro	11,4
Tis Abay II (in 2001)	Hydro	73
Koka (in 1960)	Hydro	43,2
Awash II (in 1966)	Hydro	32
Awash III (in 1971)	Hydro	32
Total Hydro Power Plant (ICS)		670,6 MW

Table 1.2-1 - Existing Ethiopian power plants

Vol 1: Executive Summary

1.2.3 COMMITTED POWER PROJECTS

Five hydropower projects are committed by EEPCO in 2006 and under construction: Gilgel Gibe II and Gibe III, Tekeze, Upper Beles and Neshe which main characteristic and commissioning dates are shown in the following table:

Hydro Power Plant (Commissioning date)	Installed capacity (MW)	Average energy capacity (GWh)	
Gigel Gibe II - 2008	420	1 600	
Gibe III - 2012	1870	6 240	
Tekeze - 2008	300	960	
Beles - 2009	460	2 000	
(w/o Tis Abay I & II)	(376)	(1 630)	
Neshe HPP - 2010	97	225	
Total new capacity	3 147 MW	11 025 GWh	
(w/o Tis Abay I & II)	(3 063 MW)	(10 655 GWh)	

Table 1.2-2 - Ethiopian Committed Hydropower Projects

1.2.4 EXISTING TRANSMISSION SYSTEM AND POWER TRADE

The Ethiopian system consists mainly of 230 and 132 kV lines. The 230 kV network extends from Addis Ababa about 400 km eastward to Dire Dawa, about 300 km southward to Shashemene and about 1000 km northward to Tekeze and Gonder.

Three 230 kV substations supply Addis Ababa, that represents 60% of the total demand.

A 400 kV network will be soon erected to evacuate the generation of Gilgel Gibe II HPP until Addis Ababa.

Ethiopia will be interconnected with Sudan with a 230 kV double circuit line between Gonder and Gedaref in Sudan. The commissioning is expected in year 2008.

Vol 1: Executive Summary

1.3 SUDAN

Sudan is an afro-Arab country occupying a remarkable strategic position in the centre of the Africa continent, has a population of 35 millions inhabitants. The growth rate of population is 2,6%. It shares its extensive borders with nine countries of northern, eastern, central and western Africa. Such juxtaposition engenders a mix of trade, culture, social, ethnic and other human ties built throughout history.

Agriculture remains the backbone of Sudanese economy and oil exportation is very recent.

The electrification ratio of the Sudan (percentage of households with electricity supply) is one of the lowest in the world, estimated at about 19% (made up from about 16.3% metered NEC connections, 2.3% connections to private supply companies and 0.2% unmetered connections).

1.3.1 SUDANESE UTILITY

The National Electricity Corporation (NEC) is the governmental entity responsible for generation, transmission and distribution of electric power in the Sudan. NEC's power system comprises mainly the national grid (NG) and a number of isolated diesel power stations.

The electricity system within Sudan is comprised of the main National Grid, a number of isolated off-grid systems and some existing private generation companies. NEC's main grid system is divided into the Khartoum, Central, Eastern and Northern areas.

The towns of Atbara and Shendi in River Nile state, which were previously supplied by local off-grid generation, were connected to the National Grid as part of the Merowe transmission reinforcement scheme in the second half of 2005.

1.3.2 CURRENT GENERATION SUPPLY

In 2003 Gerri I and Gerri II combined cycle power generating facilities were commissioned. Adding to the grid about 386 MW generating capacity the supply exceeds the demand and the power cuts are mainly limited to failures in transmission and distribution.

At the time being the total capacity available for dispatch on the National Grid is about 826 MW, of which some 59% is conventional thermal plant and the remaining 41% is hydroelectric plant.

In the table here below, is set out the generation mix on the National Grid as at July 2006 and provide a summary of installed and available capacities from the existing on-grid power plants.

Vol 1: Executive Summary

Power Plant	Plant Type	Fuel Type	Net Capacity (MW)
Khartoum North ST's	Thermal	HFO	157.0
Khartoum North GT's	Thermal	Gas Oil	50.4
Garri 1 CCGT's	Thermal	Gas Oil	164.0
Garri 2 OCGT's	Thermal	Gas Oil	84.0
El Fau Diesel	Thermal	Gas Oil	10.0
Kassala Diesel's	Thermal	Gas Oil	7.9
Girba Diesel's	Thermal	Diesel	4.0
Kuku GT's	Thermal	Gas Oil	19.0
Total Thermal Plant			496.3
Roseires	Hydro		280.0
Sennar	Hydro		15.0
Kashm El Girba	Hydro		18.1
Jebel Aulia	Hydro		28.1
Total Hydro Plant			341.2
Net Installed Capacity			837.5
Thermal Capacity Part			59%
Hydro Capacity Part			41%

Table 1.3-1 - Existing Sudanese power plants

1.3.3 COMMITTED POWER PROJECTS

According to NEC master plan, the following power plants have been identified as committed contributors to the Sudan generation expansion plan.

■ Khartoum North Units 5 and 6 (100 MW each – 2008)

Conversion of Garri 2 power station to combined cycle operation (200 MW – 2008)

Kilo X GT (80 MW - 2007)
 Garri (3) steam plant (540 MW - 2010)
 Garri (4) steam plant (100MW - 2007)
 Port Sudan steam plant (405 MW - 2009)
 Kosti steam plant (500 MW - 2010)
 El Bagair steam plant (540 MW - 2010)

Vol 1: Executive Summary

Kassala diesel plant (50 MW – 2007)
 Al Fula steam plant (540 MW – 2010)
 Merowe hydroelectric plant (1 250 MW – 2008)
 Sennar extension hydroelectric plant (1 250 MW – 2008)

■ The heightening of the Rosieres hydroelectric plant, with Dinder (135 MW – 2012)

1.3.4 EXISTING TRANSMISSION SYSTEM AND POWER TRADE

At present there is no international power trade between Sudan and the neighbouring countries. This is partly because until today there was no transmission facilities to enable such trade.

The Sudanese system consists mainly of 110 and 220 kV lines. The system includes a 800 km 220 kV double circuit line from Roseires HPP, located in the south close to Ethiopia border, to Khartoum along to the Blue Nile River. A 110 kV double circuit ring supplies Khartoum, that represents 50% of the total load. This 110 kV ring is connected to the 220 kV system with two 220/110 kV substations at Eid Babiker and Kilo X.

In the coming year 2007, the network will be reinforced with a 500 kV double circuit line from Merowe HPP (installed capacity 1 250 MW) to Khartoum and a 500 kV single circuit line between Merowe and Atbara located on the Nile, 300 km north east of Khartoum.

In the next years, NEC intends to extend its 220 kV system by about 2 000 km of new lines.

2. ORGANISATION OF MODULE 2 REPORT

Module 2 deals with the assessment of the existing market and power trade situation in the Egypt, Ethiopia and Sudan.

This Module is organized in four Volumes:

- Volume 1: Overview of Module M2.
- Volume 2: Market of Power Trade assessment for Egypt.
- Volume 3: Market of Power Trade assessment for Ethiopia.
- Volume 4: Market of Power Trade assessment for Sudan.

Each volume from Vol 2 to Vol 4 analyses the existing situation in each country along the following items:

- Review of the electricity sector.
- Assessment of existing generation mix (TPP, HPP, geothermal, etc).
- Assessment of existing power trade.
- Assessment of existing transmission system.