

NBI MEMBER STATES

1. Introduction	4
1.1 Rationale	5
1.2 Scope	5
2. Data and methods	5
3. Results	6
3.1 Timing of 1.5 and 2 °C global warming levels	6
3.2 Historical rainfall over Egypt	7
3.3 Historical temperature over Egypt	7
3.4 The rank of all GCMs for temperature and rainfall	8
3.5 Projected rainfall by using 78 CMIP5 GCMs at 2 °C and 1.5 °C over Egypt	10
3.6 Projected temperature by using 78 CMIP5 GCMs at 2 °C and 1.5 °C over Egypt	10

1. Introduction

Africa is one of the most vulnerable regions to weather and climate change impacts as indicated by the IPCC report in 2007 and 2014, and yet has a low adaptive capacity. Several studies assessed how climate change will impact the flow at the Nile, and found that, there is a wide disparity in predictions of future Nile flow scenarios. A study in 1998 by Yates supports previous findings that changes in precipitation and to a lesser extent temperature over the Nile basin could have serious consequences on regional water resources throughout this large African basin. The 2*CO GCM scenarios gave a wide range of changes both in total water yield at Aswan and regional hydrologic changes throughout the basin. Five of six GCMs showed increased flows at Aswan, with increases as much as 137% (UKMO). Only one GCM (GFDL) showed a decline in annual discharge at Aswan (-15%). Five of six GCMs predict increased precipitation in equatorial Africa. With some GCM scenarios predicting large increases in Nile discharge, there will be a need to increase flood protection. He estimated 6% increase of the Nile at Aswan Dam.

Another study by Kim in 2007 expected that in a 100-year time series analysis using the outcomes of the six general circulation models showed that precipitation changes for the 2050s (2040 through 2069) can be -7% to 28% with a mean increase of about 11%.

Rogelj and Knutti in 2016 pointed out that further investigation is required by the geoscience community to address in what way the unclear risks and impacts for 1.5 °C differ from those for 2 °C, which can then contribute to the climate policy discussions, it will help each country about the state of knowledge of what may happen in their region. In particular, there is a need to understand the geographical distribution of these risks: in what regions and in what ways is the differential impact of 2.0 over 1.5 degrees is small or big. Assessments of these differential risks can contribute to discussions about the costs of adaptation to overcome impacts experienced beyond 1.5 degrees, and mechanisms for loss and damage for impacts that cannot be avoided.



Figure 1: Graphical representation of range of discharges (in BCM) for major points along Nile (Two numbers on ends of each line represent extreme discharges of six GCM scenarios, whereas boxed number is historic average; additional tick marks on each line are remaining GCM scenarios, which indicates range of climate change induced flows of Nile Basin (Yates et al.1998b).

1.1 Rationale

Climate change could bring about dramatic changes in the water resources of the Nile basin, which need a great effort from the water management and planners in managing current and developing future water resources projects.

The extensive literature review revealed that there is no common agreement among all the GCMs and there is a level of uncertainty in the projected rainfall and flow over the Nile Basin. The previous analysis didn't investigate whether the used models were dry or wet. In addition, it used a limited number of ensemble members.

The NBI-Sec is intended to do a series of studies in order to answer different scientific questions involving future climate change for rainfall and temperature, water resources, extreme events, agriculture, land cover change, and seasonal prediction applications.

1.2 Scope

This bulletin presents an analysis of historical and projected temperature and rainfall changes in Egypt at 1.5 and 2.0 degrees global warming. Using data from

the CMIP5 multi-model archive, the study:

- Determined the historical spatial trend of the rainfall and temperature.
- Determined the timing of global mean warming of 1.5 and 2.0 degrees over pre-industrial temperatures;
- Rank the models from the wettest to driest, and from the coldest to hottest for each country to illustrate which one is wet and which is dry.
- Calculated changes in mean annual spatial temperature and precipitation changes at these times over Egypt.

2. Data and methods

The global observational gridded TS3.22 dataset from the University of East Anglia's Climatic Research Unit (CRU) was used to examine and map observed seasonal (JJA and DJF) and trends in temperature and precipitation. Monthly values were used at a resolution of 0.5 degrees longitude by 0.5 degrees latitude, from 1963 to 2012. The Mann-kendall test was used to calculate the P-value significance above 95%.

A suite of CMIP5 models for the RCP8.5 were downloaded

and used in this study. This included GCMs for which there were multiple ensembles. In total 35 GCMs were considered and provided 81 ensemble members (some GCMs has multiple members of the same model) for temperature analysis and 78 for rainfall (Figure 1). The timing of each Global Warming Level (GWL; in this case 1.5 and 2.0 degrees over preindustrial) in each model simulation was determined as follows: (i) calculate a 40-year pre-industrial global mean temperature, for the period 1861-1900; these dates were chosen to incorporate the maximum number of models, as some only have data starting in 1861; (ii) identify the first year at which the 31-year running mean of global temperature exceeds 1.5 and 2.0 degrees over the pre-industrial global mean temperature. National area-averaged temperature and rainfall changes relative to pre-industrial at the time of 1.5 and 2.0 GWL were then calculated using the 31-year mean centered on the time of GWL.

3. Results

3.1 Timing of 1.5 and 2 °C global warming levels

The mean time of 1.5 and 2.0 GWL across the 81 members of the RCP8.5 is 2024 and 2038 respectively (Figure 1). However, there is considerable variability

amongst the GCMs. Models with higher transient climate sensitivity reach the GWLs sooner, while those with lower sensitivity pass the GWL later. For example, the BNUESM, is the first to reach 1.5 and 2.0 GWL at 2008 and 2022, respectively; in contrast, INMCM4 is the last to reach these GWLs, at 2043 and 2057.

The median time delay between 1.5 and 2.0 GWLs is 14 years, with a range of 11 to 22. There is, however, no correlation between the speed at which models reach 1.5 degrees and time they take to warm a further 0.5 degrees. Nonetheless, at the rates of climate forcing associated with RCP8.5, the time between these two GWLs is very short. This implies that under current rates of emissions increases, there will be very little time to react to the progressive impacts of climate change in countries as warming moves from the 1.5 to the 2.0 GWL and beyond.

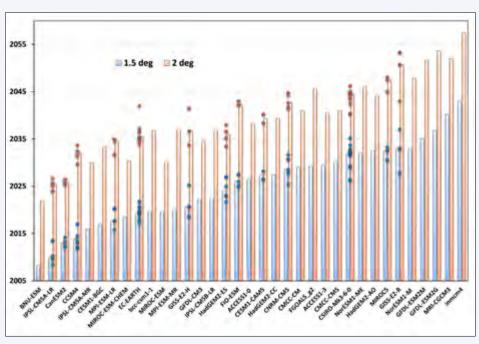


Figure 2: The timing of global warming of 1.5 $^{\circ}$ C and 2.0 $^{\circ}$ C in each ensemble member, some GCMs has multiple members of the same model.

3.2 Historical rainfall over Egypt:

The historical trend of the rainfall over the Egypt showed a little (insignificant) trend of decreasing rainfall over almost all Egypt.

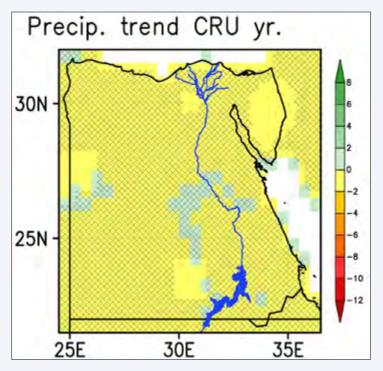


Figure 3: The monotonic slope in precipitation (mm) between 1963 and 2012 at each grid cell, according to a linear trend per decade for Jan. to Dec. Hatching indicates areas where the trend is not statistically significant at the 95% level. Data taken from the CRU TS3.22 datasets.

3.3 Historical temperature over Egypt:

The historical trend of the temperature over the Egypt showed a significant decreasing trend over almost all Egypt and it increased southward up to 0.5. The Delta region showed an insignificant increasing trend.

Figure 4: The monotonic slope in temperature (deg C) between 1963 and 2012 at each grid cell, according to a linear trend per decade for Jan to Dec. Hatching indicates areas where the trend is not statistically significant at the 95% level. Data taken from the CRU TS3.22 datasets.

3.4 The rank of all GCMs for temperature and rainfall

It is always advised when using any GCM to force a hydrological model, not to use only one GCM. Several ensemble members should be used. The tables below showed the rank of all the GCMs from wettest to driest for the rainfall, and from hottest to coldest for the temperature.

Table 1: Rank of the GCMs from wettest to driest over Egypt.

2 Noresmi-Me 8.1 28 CMCC-CM -0.463 54 HadGEM2-CC -2.5 3 CESMI-CAMS 7.23 29 CCSM4 -0.502 55 MPI-ESM-LR -2.5 4 CaneSM2 6.63 30 CSIRO-Mk3-6-0 -0.602 56 GFDL-ESM2G -2.5 5 CESMI-CAMS 5.5 31 FGOALS_g2 -0.818 57 IPSL-CM5A-LR -3.1 6 MIROC-ESM-CHEM 4.43 32 MRI-CGCM3 -0.995 58 ACCESSI-0 -3.3 7 BNU-ESM 4.06 33 ACCESSI-3 -1.13 59 IPSL-CM5A-LR -3.3 8 CaneSM2 3.87 34 CSIRO-Mk3-6-0 -1.22 60 CSIRO-Mk3-6-0 -3.6 9 CNRM-CM5 3.82 35 HadGEM2-ES -1.26 61 MPI-ESM-LR -3.7 10 CSIRO-Mk3-6-0 3.37 36 CANESM2 -1.39 62 EC-EARTH -3.7 11 MIROCS 2.31 37 Inmcm4 -1.44 63 HadGEM2-ES -4.1 12 CSIRO-Mk3-6-0 2.29 38 HadGEM2-ES -1.53 64 IPSL-CM5A-LR -4.1 13 CANESM2 2.19 39 CCSM4 -1.62 65 IPSL-CM5A-LR -4.1 14 CANESM2 2.17 40 CSIRO-Mk3-6-0 -1.66 66 CNRM-CM5 -4.1 15 CSIRO-Mk3-6-0 1.88 41 EC-EARTH -1.71 67 CSIRO-Mk3-6-0 -4.1 16 CCSM4 1.76 42 CESMI-BGC -1.79 68 CNRM-CM5 -4.1 17 MIROC-ESM 1.67 43 FIO-ESM -1.83 69 FIO-ESM -4.1 18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4.1 19 GFDL-CM3 1.15 45 CSIRO-Mk3-6-0 -1.98 71 GFDL-ESM2M -5.1 20 MIROCS 0.983 46 bcc-csmi-1 -2.05 72 GISS-E2-R -4.1 21 CSIRO-Mk3-6-0 0.837 47 CCSM4 -2.23 73 GISS-E2-H -5.3 22 NORESMI-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-LR -2.26 75 GISS-E2-R -7.0 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.265 77 EC-EARTH -1.4	No	Model	pre	No	Model	pre	No	Model	pre
3 CESMI-CAM5 7.23 29 CCSM4 -0.502 55 MPI-ESM-LR -2.5 4 CanESM2 6.63 30 CSIRO-Mk3-6-0 -0.602 56 GFDL-ESM2G -2.5 5 CESMI-CAM5 5.5 31 FGOALS_g2 -0.818 57 IPSL-CM5A-LR -3.1 6 MIROC-ESM-CHEM 4.43 32 MRI-CGCM3 -0.995 58 ACCESSI-0 -3.6 7 BNU-ESM 4.06 33 ACCESSI-3 -1.13 59 IPSL-CM5A-LR -3.1 8 CanESM2 3.87 34 CSIRO-Mk3-6-0 -1.22 60 CSIRO-Mk3-6-0 -3.6 9 CNRM-CM5 3.82 35 HadGEM2-ES -1.26 61 MPI-ESM-LR -3.6 10 CSIRO-Mk3-6-0 3.37 36 CanESM2 -1.39 62 EC-EARTH -3.7 11 MIROC5 2.31 37 Inmcm4 -1.44 63 HadGEM2-ES -4.1 12 CSIRO-Mk3-6-0 2.29 38 HadGEM2-ES -1.53 64 IPSL-CM5A-LR -4.1 13 CanESM2 2.19 39 CCSM4 -1.62 65 IPSL-CM5A-LR -4.1 14 CanESM2 2.17 40 CSIRO-Mk3-6-0 -1.66 66 CNRM-CM5 -4.1 15 CSIRO-Mk3-6-0 1.88 41 EC-EARTH -1.71 67 CSIRO-Mk3-6-0 -4.1 16 CCSM4 1.76 42 CESMI-BGC -1.79 68 CNRM-CM5 -4.1 17 MIROC-ESM 1.67 43 FIO-ESM -1.83 69 FIO-ESM -4.1 18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4.1 19 GFDL-CM3 1.15 45 CSIRO-Mk3-6-0 -1.98 71 GFDL-ESM2M -5.1 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5.1 21 CSIRO-Mk3-6-0 0.837 47 CCSM4 -2.23 73 GISS-E2-H -5.1 22 NOFESMI-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-LR -2.26 75 GISS-E2-R -7.0 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.264 76 GISS-E2-R -7.0 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.26 77 EC-EARTH -1.4	1	CESM1-CAM5	18.2	27	CNRM-CM5	-0.431	53	FIO-ESM	-2.71
4 CanesM2 6.63 30 CSIRO-MK3-6-0 -0.602 56 GFDL-ESM2G -2.5 5 CESM1-CAM5 5.5 31 FGOALS_g2 -0.818 57 IPSL-CM5A-LR -3.1 6 MIROC-ESM-CHEM 4.43 32 MRI-CGCM3 -0.995 58 ACCESSI-0 -3.6 7 BNU-ESM 4.06 33 ACCESSI-3 -1.13 59 IPSL-CM5A-LR -3.3 8 CanesM2 3.87 34 CSIRO-MK3-6-0 -1.22 60 CSIRO-MK3-6-0 -3.6 9 CNRM-CM5 3.82 35 HadGEM2-ES -1.26 61 MPI-ESM-LR -3.6 10 CSIRO-MK3-6-0 3.37 36 CaneSM2 -1.39 62 EC-EARTH -3.7 11 MIROC5 2.31 37 Immcm4 -1.44 63 HadGEM2-ES -4.7 12 CSIRO-MK3-6-0 2.29 38 HadGEM2-ES -1.53 64 IPSL-CM5A-LR -4.7 13 CaneSM2 2.19 39 CCSM4 -1.62 65 IPSL-CM5A-LR -4.7 14 CaneSM2 2.17 40 CSIRO-MK3-6-0 -1.66 66 CNRM-CM5 -4.7 15 CSIRO-MK3-6-0 1.88 41 EC-EARTH -1.71 67 CSIRO-MK3-6-0 -4.7 16 CCSM4 1.76 42 CESM1-BGC -1.79 68 CNRM-CM5 -4.7 17 MIROC-ESM 1.67 43 FIO-ESM -1.83 69 FIO-ESM -4.7 18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4.7 19 GFDL-CM3 1.15 45 CSIRO-MK3-6-0 -1.98 71 GFDL-ESM2M -5.7 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5.3 21 CSIRO-MK3-6-0 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6.7 22 NOFESMI-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-MR -2.264 76 GISS-E2-R -7.0 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.264 76 GISS-E2-R -7.0 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -1.4	2	NorESM1-ME	8.1	28	смсс-см	-0.463	54	HadGEM2-CC	-2.92
5 CESMI-CAM5 5.5 31 FGOALS_g2 -0.818 57 IPSL-CM5A-LR -3.1 6 MIROC-ESM-CHEM 4.43 32 MRI-CGCM3 -0.995 58 ACCESSI-O -3.2 7 BNU-ESM 4.06 33 ACCESSI-3 -1.13 59 IPSL-CM5A-LR -3.2 8 CanESM2 3.87 34 CSIRO-M83-6-0 -1.22 60 CSIRO-M83-6-0 -3.2 9 CNRM-CM5 3.82 35 HadGEM2-ES -1.26 61 MPI-ESM-LR -3.3 10 CSIRO-M83-6-0 3.37 36 CanESM2 -1.39 62 EC-EARTH -3.7 11 MIROC5 2.31 37 inmcm4 -1.44 63 HadGEM2-ES -4.1 12 CSIRO-M83-6-0 2.29 38 HadGEM2-ES -1.53 64 IPSL-CM5A-LR -4.1 13 CanESM2 2.19 39 CCSM4 -1.62 65 IPSL-CM5A-LR -4.2 <td>3</td> <td>CESM1-CAM5</td> <td>7.23</td> <td>29</td> <td>CCSM4</td> <td>-0.502</td> <td>55</td> <td>MPI-ESM-LR</td> <td>-2.96</td>	3	CESM1-CAM5	7.23	29	CCSM4	-0.502	55	MPI-ESM-LR	-2.96
6 MIROC-ESM-CHEM 4.43 32 MRI-CGCM3 -0.995 58 ACCESSI-0 -3.3 7 BNU-ESM 4.06 33 ACCESSI-3 -1.13 59 IPSL-CM5A-LR -3.3 8 CanESM2 3.87 34 CSIRO-Mk3-6-0 -1.22 60 CSIRO-Mk3-6-0 -3.6 9 CNRM-CM5 3.82 35 HadGEM2-ES -1.26 61 MPI-ESM-LR -3.6 10 CSIRO-Mk3-6-0 3.37 36 CanESM2 -1.39 62 EC-EARTH -3.7 11 MIROC5 2.31 37 Immcm4 -1.44 63 HadGEM2-ES -4.1 12 CSIRO-Mk3-6-0 2.29 38 HadGEM2-ES -1.53 64 IPSL-CM5A-LR -4.1 13 CanESM2 2.19 39 CCSM4 -1.62 65 IPSL-CM5A-LR -4.1 14 CanESM2 2.17 40 CSIRO-Mk3-6-0 -1.66 66 CNRM-CM5 -4.1 15 CSIRO-Mk3-6-0 1.88 41 EC-EARTH -1.71 67 CSIRO-Mk3-6-0 -4.1 16 CCSM4 1.76 42 CESM1-BGC -1.79 68 CNRM-CM5 -4.1 17 MIROC-ESM 1.67 43 FIO-ESM -1.83 69 FIO-ESM -4.1 18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4.1 19 GFDL-CM3 1.15 45 CSIRO-Mk3-6-0 -1.98 71 GFDL-ESM2M -5.1 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5.1 21 CSIRO-Mk3-6-0 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6.1 22 NOFESM1-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-LR -2.26 75 GISS-E2-R -7.0 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 GISS-E2-R -9.1 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -1.4	4	CanESM2	6.63	30	CSIRO-Mk3-6-0	-0.602	56	GFDL-ESM2G	-2.99
7 BNU-ESM 4.06 33 ACCESSI-3 -1.13 59 IPSL-CM5A-LR -3.3 8 CanESM2 3.87 34 CSIRO-Mk3-6-0 -1.22 60 CSIRO-Mk3-6-0 -3.4 9 CNRM-CM5 3.82 35 HadGEM2-ES -1.26 61 MPI-ESM-LR -3.4 10 CSIRO-Mk3-6-0 3.37 36 CanESM2 -1.39 62 EC-EARTH -3.3 11 MIROC5 2.31 37 inmcm4 -1.44 63 HadGEM2-ES -4.1 12 CSIRO-Mk3-6-0 2.29 38 HadGEM2-ES -1.53 64 IPSL-CM5A-LR -4.1 13 CanESM2 2.19 39 CCSM4 -1.62 65 IPSL-CM5A-LR -4.1 14 CanESM2 2.17 40 CSIRO-Mk3-6-0 -1.66 66 CNRM-CM5 -4.1 15 CSIRO-Mk3-6-0 1.88 41 EC-EARTH -1.71 67 CSIRO-Mk3-6-0 -4.1 16 CCSM4 1.76 42 CESM1-BGC -1.79 <	5	CESM1-CAM5	5.5	31	FGOALS_g2	-0.818	57	IPSL-CM5A-LR	-3.18
8 CanESM2 3.87 34 CSIRO-MK3-6-0 -1.22 60 CSIRO-MK3-6-0 -3.0 9 CNRM-CM5 3.82 35 HadGEM2-ES -1.26 61 MPI-ESM-LR -3.0 10 CSIRO-MK3-6-0 3.37 36 CanESM2 -1.39 62 EC-EARTH -3.7 11 MIROC5 2.31 37 inmcm4 -1.44 63 HadGEM2-ES -4.1 12 CSIRO-MK3-6-0 2.29 38 HadGEM2-ES -1.53 64 IPSL-CM5A-LR -4.1 13 CanESM2 2.19 39 CCSM4 -1.62 65 IPSL-CM5A-LR -4.1 14 CanESM2 2.17 40 CSIRO-MK3-6-0 -1.66 66 CNRM-CM5 -4.1 15 CSIRO-MK3-6-0 1.88 41 EC-EARTH -1.71 67 CSIRO-MK3-6-0 -4.1 16 CCSM4 1.76 42 CESM1-BGC -1.79 68 CNRM-CM5 -4.1 17 MIROC-ESM 1.67 43 FIO-ESM -1.83 69 FIO-ESM -4.1 18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4.1 19 GFDL-CM3 1.15 45 CSIRO-MK3-6-0 -1.98 71 GFDL-ESM2M -5.1 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5.1 21 CSIRO-MK3-6-0 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6.1 22 NOFESM1-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-LR -2.26 75 GISS-E2-R -7.0 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 GISS-E2-R -9.1 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -14	6	MIROC-ESM-CHEM	4.43	32	MRI-CGCM3	-0.995	58	ACCESS1-0	-3.21
9 CNRM-CM5 3.82 35 HadGEM2-ES -1.26 61 MPI-ESM-LR -3.6 10 CSIRO-Mk3-6-0 3.37 36 CanESM2 -1.39 62 EC-EARTH -3.1 11 MIROC5 2.31 37 inmcm4 -1.44 63 HadGEM2-ES -4.1 12 CSIRO-Mk3-6-0 2.29 38 HadGEM2-ES -1.53 64 IPSL-CM5A-LR -4.1 13 CanESM2 2.19 39 CCSM4 -1.62 65 IPSL-CM5A-LR -4.1 14 CanESM2 2.17 40 CSIRO-Mk3-6-0 -1.66 66 CNRM-CM5 -4.1 15 CSIRO-Mk3-6-0 1.88 41 EC-EARTH -1.71 67 CSIRO-Mk3-6-0 -4.1 16 CCSM4 1.76 42 CESM1-BGC -1.79 68 CNRM-CM5 -4.1 17 MIROC-ESM 1.67 43 FIO-ESM -1.83 69 FIO-ESM -4.1 18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4.1 19 GFDL-CM3 1.15 45 CSIRO-Mk3-6-0 -1.98 71 GFDL-ESM2M -5.1 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5.1 21 CSIRO-Mk3-6-0 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6.1 22 NOTESMI-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-LR -2.64 75 GISS-E2-R -7.0 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 GISS-E2-R -9.1 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -1.4	7	BNU-ESM	4.06	33	ACCESS1-3	-1.13	59	IPSL-CM5A-LR	-3.23
10 CSIRO-Mk3-6-0 3.37 36 CanESM2 -1.39 62 EC-EARTH -3.7 11 MIROC5 2.31 37 inmcm4 -1.44 63 HadGEM2-ES -4.1 12 CSIRO-Mk3-6-0 2.29 38 HadGEM2-ES -1.53 64 IPSL-CM5A-LR -4. 13 CanESM2 2.19 39 CCSM4 -1.62 65 IPSL-CM5A-LR -4. 14 CanESM2 2.17 40 CSIRO-Mk3-6-0 -1.66 66 CNRM-CM5 -4. 15 CSIRO-Mk3-6-0 1.88 41 EC-EARTH -1.71 67 CSIRO-Mk3-6-0 -4. 16 CCSM4 1.76 42 CESM1-BGC -1.79 68 CNRM-CM5 -4. 17 MIROC-ESM 1.67 43 FIO-ESM -1.83 69 FIO-ESM -4. 18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4. 19 GFDL-CM3 1.15 45 CSIRO-Mk3-6-0 -1.98 71 GFDL-ESM2M -5. 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5. 21 CSIRO-Mk3-6-0 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6. 22 NorESM1-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-LR -2.64 75 GISS-E2-H -7.6 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 GISS-E2-R -9. 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -14.	8	CanESM2	3.87	34	CSIRO-Mk3-6-0	-1.22	60	CSIRO-Mk3-6-0	-3.62
11 MIROC5 2.31 37 inmcm4 -1.44 63 HadGEM2-ES -4.1 12 CSIRO-Mk3-6-0 2.29 38 HadGEM2-ES -1.53 64 IPSL-CM5A-LR -4.1 13 CanESM2 2.19 39 CCSM4 -1.62 65 IPSL-CM5A-LR -4.1 14 CanESM2 2.17 40 CSIRO-Mk3-6-0 -1.66 66 CNRM-CM5 -4.1 15 CSIRO-Mk3-6-0 1.88 41 EC-EARTH -1.71 67 CSIRO-Mk3-6-0 -4.1 16 CCSM4 1.76 42 CESM1-BGC -1.79 68 CNRM-CM5 -4.1 17 MIROC-ESM 1.67 43 FIO-ESM -1.83 69 FIO-ESM -4.1 18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4.1 19 GFDL-CM3 1.15 45 CSIRO-Mk3-6-O -1.98 71 GFDL-ESM2M -5.1 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72	9	CNRM-CM5	3.82	35	HadGEM2-ES	-1.26	61	MPI-ESM-LR	-3.69
12 CSIRO-Mk3-6-O 2.29 38 HadGEM2-ES -1.53 64 IPSL-CM5A-LR -4 13 CanESM2 2.19 39 CCSM4 -1.62 65 IPSL-CM5A-LR -4 14 CanESM2 2.17 40 CSIRO-Mk3-6-O -1.66 66 CNRM-CM5 -4 15 CSIRO-Mk3-6-O 1.88 41 EC-EARTH -1.71 67 CSIRO-Mk3-6-O -4 16 CCSM4 1.76 42 CESM1-BGC -1.79 68 CNRM-CM5 -4 17 MIROC-ESM 1.67 43 FIO-ESM -1.83 69 FIO-ESM -4 18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4 19 GFDL-CM3 1.15 45 CSIRO-Mk3-6-O -1.98 71 GFDL-ESM2M -5 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5 21 CSIRO-Mk3-6-O 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6 22 NOFESM1-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0. 23 CCSM4 0.497 49 MPI-ESM-LR -2.64 75 GISS-E2-R -7.6 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 GISS-E2-R -9 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -14	10	CSIRO-Mk3-6-0	3.37	36	CanESM2	-1.39	62	EC-EARTH	-3.7
13 CanESM2 2.19 39 CCSM4 -1.62 65 IPSL-CM5A-LR -4.1 14 CanESM2 2.17 40 CSIRO-Mk3-6-0 -1.66 66 CNRM-CM5 -4.1 15 CSIRO-Mk3-6-0 1.88 41 EC-EARTH -1.71 67 CSIRO-Mk3-6-0 -4.1 16 CCSM4 1.76 42 CESMI-BGC -1.79 68 CNRM-CM5 -4.1 17 MIROC-ESM 1.67 43 FIO-ESM -1.83 69 FIO-ESM -4.1 18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4.1 19 GFDL-CM3 1.15 45 CSIRO-Mk3-6-O -1.98 71 GFDL-ESM2M -5.1 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5.1 21 CSIRO-Mk3-6-O 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6.1 22 NorESM1-M 0.785 48 IPSL-CM5B-LR -2.26 74 <td>11</td> <td>MIROC5</td> <td>2.31</td> <td>37</td> <td>inmcm4</td> <td>-1.44</td> <td>63</td> <td>HadGEM2-ES</td> <td>-4.19</td>	11	MIROC5	2.31	37	inmcm4	-1.44	63	HadGEM2-ES	-4.19
14 Canesm2 2.17 40 CSIRO-Mk3-6-0 -1.66 66 CNRM-CM5 -4.1 15 CSIRO-Mk3-6-0 1.88 41 EC-EARTH -1.71 67 CSIRO-Mk3-6-0 -4.1 16 CCSM4 1.76 42 CESMI-BGC -1.79 68 CNRM-CM5 -4.1 17 MIROC-ESM 1.67 43 FIO-ESM -1.83 69 FIO-ESM -4.1 18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4.1 19 GFDL-CM3 1.15 45 CSIRO-Mk3-6-0 -1.98 71 GFDL-ESM2M -5.1 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5.1 21 CSIRO-Mk3-6-0 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6.1 22 NorESM1-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-MR -2.64 75 <td>12</td> <td>CSIRO-Mk3-6-0</td> <td>2.29</td> <td>38</td> <td>HadGEM2-ES</td> <td>-1.53</td> <td>64</td> <td>IPSL-CM5A-LR</td> <td>-4.22</td>	12	CSIRO-Mk3-6-0	2.29	38	HadGEM2-ES	-1.53	64	IPSL-CM5A-LR	-4.22
15 CSIRO-Mk3-6-0 1.88 41 EC-EARTH -1.71 67 CSIRO-Mk3-6-0 -4.1 16 CCSM4 1.76 42 CESM1-BGC -1.79 68 CNRM-CM5 -4.1 17 MIROC-ESM 1.67 43 FIO-ESM -1.83 69 FIO-ESM -4.1 18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4.1 19 GFDL-CM3 1.15 45 CSIRO-Mk3-6-O -1.98 71 GFDL-ESM2M -5.3 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5.3 21 CSIRO-Mk3-6-O 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6.3 22 NorESM1-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-LR -2.64 75 GISS-E2-H -7.6 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 </td <td>13</td> <td>CanESM2</td> <td>2.19</td> <td>39</td> <td>CCSM4</td> <td>-1.62</td> <td>65</td> <td>IPSL-CM5A-LR</td> <td>-4.54</td>	13	CanESM2	2.19	39	CCSM4	-1.62	65	IPSL-CM5A-LR	-4.54
16 CCSM4 1.76 42 CESM1-BGC -1.79 68 CNRM-CM5 -4.0 17 MIROC-ESM 1.67 43 FIO-ESM -1.83 69 FIO-ESM -4.0 18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4.0 19 GFDL-CM3 1.15 45 CSIRO-Mk3-6-O -1.98 71 GFDL-ESM2M -5.1 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5.3 21 CSIRO-Mk3-6-O 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6.3 22 NorESM1-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-LR -2.64 75 GISS-E2-H -7.6 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 GISS-E2-R -9.3 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77	14	CanESM2	2.17	40	CSIRO-Mk3-6-0	-1.66	66	CNRM-CM5	-4.55
17 MIROC-ESM 1.67 43 FIO-ESM -1.83 69 FIO-ESM -4.6 18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4.7 19 GFDL-CM3 1.15 45 CSIRO-Mk3-6-O -1.98 71 GFDL-ESM2M -5.3 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5.9 21 CSIRO-Mk3-6-O 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6.8 22 NorESM1-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-LR -2.64 75 GISS-E2-H -7.6 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 GISS-E2-R -9.3 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -14	15	CSIRO-Mk3-6-0	1.88	41	EC-EARTH	-1.71	67	CSIRO-Mk3-6-0	-4.56
18 CCSM4 1.64 44 HadGEM2-AO -1.92 70 GISS-E2-R -4.3 19 GFDL-CM3 1.15 45 CSIRO-Mk3-6-O -1.98 71 GFDL-ESM2M -5.3 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5.3 21 CSIRO-Mk3-6-O 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6.3 22 NorESM1-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-LR -2.64 75 GISS-E2-H -7.6 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 GISS-E2-R -9.3 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -14	16	CCSM4	1.76	42	CESM1-BGC	-1.79	68	CNRM-CM5	-4.65
19 GFDL-CM3 1.15 45 CSIRO-Mk3-6-0 -1.98 71 GFDL-ESM2M -5.7 20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5.9 21 CSIRO-Mk3-6-0 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6.9 22 NorESM1-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-LR -2.64 75 GISS-E2-H -7.6 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 GISS-E2-R -9.3 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -14	17	MIROC-ESM	1.67	43	FIO-ESM	-1.83	69	FIO-ESM	-4.66
20 MIROC5 0.983 46 bcc-csm1-1 -2.05 72 GISS-E2-H -5.9 21 CSIRO-Mk3-6-0 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6.8 22 NorESM1-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-LR -2.64 75 GISS-E2-H -7.6 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 GISS-E2-R -9.3 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -14	18	CCSM4	1.64	44	HadGEM2-AO	-1.92	70	GISS-E2-R	-4.72
21 CSIRO-Mk3-6-0 0.837 47 CCSM4 -2.23 73 GISS-E2-H -6.8 22 NorESM1-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-LR -2.64 75 GISS-E2-H -7.6 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 GISS-E2-R -9.3 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -14	19	GFDL-CM3	1.15	45	CSIRO-Mk3-6-0	-1.98	71	GFDL-ESM2M	-5.75
22 NorESM1-M 0.785 48 IPSL-CM5B-LR -2.26 74 GISS-E2-R -7.0 23 CCSM4 0.497 49 MPI-ESM-LR -2.64 75 GISS-E2-H -7.6 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 GISS-E2-R -9.3 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -14	20	MIROC5	0.983	46	bcc-csm1-1	-2.05	72	GISS-E2-H	-5.97
23 CCSM4 0.497 49 MPI-ESM-LR -2.64 75 GISS-E2-H -7.6 24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 GISS-E2-R -9.3 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -14	21	CSIRO-Mk3-6-0	0.837	47	CCSM4	-2.23	73	GISS-E2-H	-6.85
24 CNRM-CM5 -0.175 50 MPI-ESM-MR -2.64 76 GISS-E2-R -9.3 25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -14.	22	NorESM1-M	0.785	48	IPSL-CM5B-LR	-2.26	74	GISS-E2-R	-7.04
25 HadGEM2-ES -0.219 51 CMCC-CMS -2.65 77 EC-EARTH -14.	23	CCSM4	0.497	49	MPI-ESM-LR	-2.64	75	GISS-E2-H	-7.67
	24	CNRM-CM5	-0.175	50	MPI-ESM-MR	-2.64	76	GISS-E2-R	-9.37
26 MIROC5 -0.389 52 IPSL-CM5A-MR -2.65 78 EC-EARTH -15.	25	HadGEM2-ES	-0.219	51	CMCC-CMS	-2.65	77	EC-EARTH	-14.2
	26	MIROC5	-0.389	52	IPSL-CM5A-MR	-2.65	78	EC-EARTH	-15.7

Table 2: Rank of the GCMs from hottest to coldest over Egypt.

No	Model	tmp	No	Model	tmp	No	Model	tmp
1	HadGEM2-ES	2.29	28	bcc-csm1-1	1.94	55	ACCESS1-3	1.78
2	HadGEM2-ES	2.24	29	IPSL-CM5A-LR	1.94	56	EC-EARTH	1.78
3	MIROC5	2.23	30	ACCESS1-0	1.93	57	CESM1-BGC	1.77
4	CSIRO-Mk3-6-0	2.22	31	HadGEM2-ES	1.93	58	EC-EARTH	1.76
5	HadGEM2-ES	2.22	32	CSIRO-Mk3-6-0	1.92	59	MIROC-ESM	1.76
6	MIROC5	2.21	33	FIO-ESM	1.92	60	CanESM2	1.75
7	inmcm4	2.2	34	CSIRO-Mk3-6-0	1.91	61	CanESM2	1.75
8	СМСС-СМ	2.18	35	GISS-E2-R	1.89	62	CSIRO-Mk3-6-0	1.75
9	HadGEM2-CC	2.17	36	MPI-ESM-LR	1.89	63	IPSL-CM5A-LR	1.75
10	CESM1-CAM5	2.15	37	IPSL-CM5A-LR	1.88	64	CCSM4	1.74
11	GFDL-ESM2M	2.15	38	EC-EARTH	1.87	65	CCSM4	1.74
12	EC-EARTH	2.14	39	MPI-ESM-LR	1.87	66	GISS-E2-H	1.74
13	CESM1-CAM5	2.11	40	CanESM2	1.86	67	GISS-E2-H	1.72
14	MIROC5	2.09	41	CSIRO-Mk3-6-0	1.86	68	CanESM2	1.71
15	CSIRO-Mk3-6-0	2.07	42	NorESM1-ME	1.86	69	MIROC-ESM-CHEM	1.7
16	HadGEM2-AO	2.07	43	GISS-E2-R	1.85	70	CCSM4	1.68
17	смсс-смѕ	2.03	44	IPSL-CM5A-MR	1.85	71	CCSM4	1.68
18	GFDL-CM3	2.03	45	CanESM2	1.83	72	IPSL-CM5A-LR	1.67
19	MRI-CGCM3	2.02	46	CSIRO-Mk3-6-0	1.83	73	CCSM4	1.63
20	CSIRO-Mk3-6-0	2.01	47	EC-EARTH	1.83	74	CNRM-CM5	1.62
21	NorESM1-M	2.01	48	CCSM4	1.81	75	CNRM-CM5	1.62
22	GISS-E2-R	2	49	CNRM-CM5	1.81	76	CNRM-CM5	1.59
23	CSIRO-Mk3-6-0	1.99	50	GISS-E2-H	1.81	77	GFDL-ESM2G	1.57
24	FGOALS_g2	1.99	51	CSIRO-Mk3-6-0	1.8	78	BNU-ESM	1.54
25	FIO-ESM	1.97	52	EC-EARTH	1.8	79	FIO-ESM	1.52
26	MPI-ESM-MR	1.97	53	EC-EARTH	1.8	80	CNRM-CM5	1.49
27	EC-EARTH	1.96	54	MPI-ESM-LR	1.79	81	IPSL-CM5B-LR	1.47

3.5 Projected rainfall by using 78 CMIP5 GCMs at 2 °C and 1.5 °C over Egypt:

A mean of 78 GCMs were used to show the projection over the Egypt at 2 and 1.5 °C during 2038 and 2024. The north part showed a drying signal. All the middle and south region showed a small positive signal.

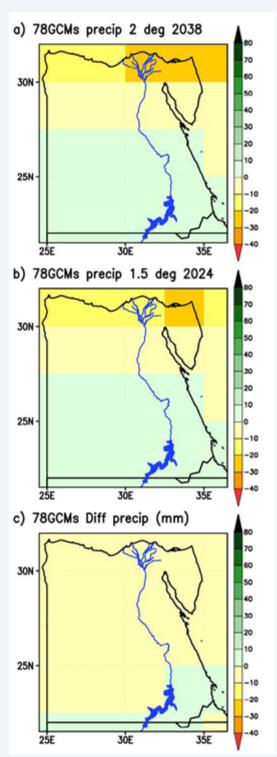


Figure 5: Projected spatial annual rainfall change for Egypt, at the time of global warming of 2°C, 1.5 °C, and the difference. Data are average from 78 CMIP5 climate model simulations under the RCP8.5 forcing scenario.

3.6 Projected temperature by using 78 CMIP5 GCMs at 2 °C and 1.5 °C over Egypt:

A mean of 81 GCMs were used to show the projection of temperature over Egypt at the global mean temperature of 2 and 1.5 °C during 2038 and 2024. The north part along the Mediterranean Sea is below the global 2 and 1.5 °C. The south region showed the highest projected increase in the temperature.

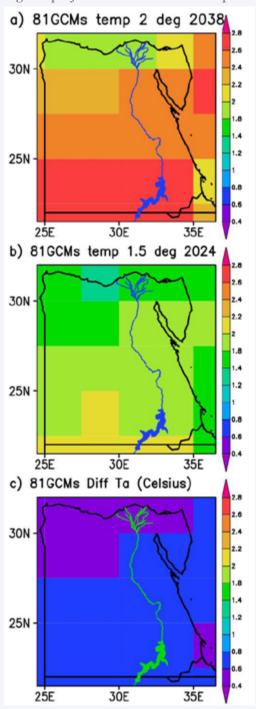
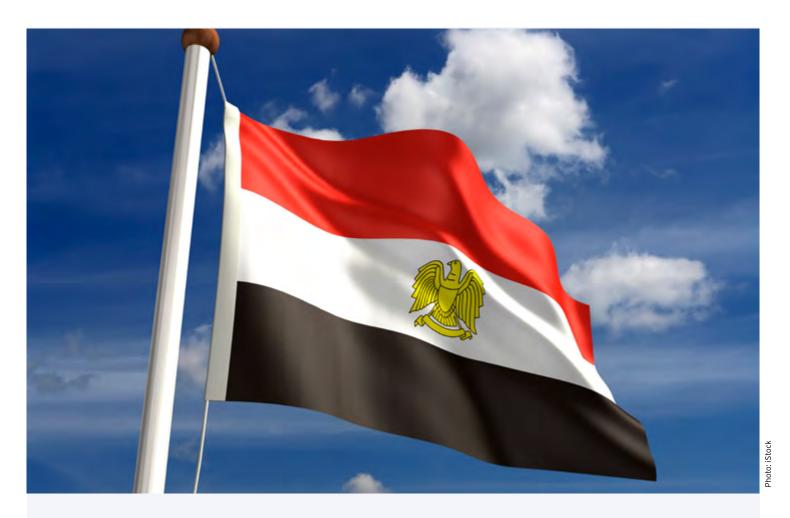



Figure 6: Projected spatial annual temperature change for Egypt, at the time of global warming of 2°C, 1.5 °C, and the difference. Data are average from 81 CMIP5 climate model simulations under the RCP8.5 forcing scenario.

ONE RIVER ONE PEOPLE ONE VISION

Nile Basin Initiative Secretariat

P.O. Box 192 Entebbe - Uganda Tel: +256 414 321 424 +256 414 321 329 +256 417 705 000 Fax: +256 414 320 971

Email: nbisec@nilebasin.org Website: http://www.nilebasin.org Facebook: /Nile Basin Initiative

Twitter: @nbiweb

Eastern Nile Technical Regional Office

Dessie Road P.O. Box 27173-1000 Addis Ababa - Ethiopia

Tel: +251 116 461 130/32 +251 116 459 407 Fax: Email: entro@nilebasin.org Website: http://ensap.nilebasin.org

Nile Equatorial Lakes Subsidiary Action **Program Coordination Unit**

Kigali City Tower KCT, KN 2 St, Kigali P.O. Box 6759, Kigali Rwanda Tel: +250 788 307 334

Fax: +250 252 580 100

Email: nelsapcu@nilebasin.org Website: http://nelsap.nilebasin.org

NBI MEMBER STATES

M /Nile Basin Initiative @nbiweb

#NileCooperation; #NileBasin; #OneNile

