

Nile Basin DSS

Inception Report

 Appendix D

Software Architecture Document

Software Architecture Document (SAD)

Appendix D

Nile Basin DSS

Inception Report

i

Appendix D

Software Architecture Document

Contents

1 INTRODUCTION ... 1
1.1 Scope ... 1
1.2 How to read this document ... 1
1.3 References ... 2
1.4 Terminology .. 2
1.5 Use of Diagrams ... 6
1.5.1 UML Component Diagrams .. 6
1.5.2 UML Sequence Diagrams .. 7
1.5.3 Gane-Sarson Data Flow Diagrams ... 7

2 VIEWPOINTS ... 9

3 ARCHITECTURE OVERVIEW .. 10
3.1 Vision ... 10
3.2 Architecture overview ... 10

4 SOFTWARE COMPONENTS ... 13
4.1 Establishing Software Components .. 13
4.2 Software Component Descriptions .. 19
4.3 Software Components and Use Case Mapping .. 22
4.4 Software Components and Requirement Mapping .. 25

5 VIEWPOINT: LOGICAL VIEW ... 37
5.1 Components ... 37
5.1.1 The Helicopter View ... 38
5.1.2 The DSS Front-end .. 38
5.1.2.1 The Application Component .. 39
5.1.2.2 The Shell Component .. 40
5.1.2.3 The Modules .. 43
5.1.2.4 The UI Components .. 48
5.1.2.5 The Tool Components ... 50
5.1.3 The Model Tools .. 50
5.1.3.1 The Model Adapters .. 51
5.1.3.2 Model Setup Registration (IConfigAdapter) .. 51
5.1.3.3 Scenario Simulation (IRuntimeAdapter) ... 54
5.1.3.4 Linking of models ... 58
5.1.3.5 Model adapter pattern ... 59
5.1.4 The Database .. 60
5.1.4.1 Data Categories... 60
5.1.4.2 Data Entities .. 62
5.1.4.3 Data Compartments .. 68
5.1.4.4 Data Integrity ... 70
5.1.4.5 Data Access Pattern .. 71
5.2 Modelling Components ... 72
5.2.1 Ensemble Modeller Component ... 72
5.2.2 Model Linker Component ... 74

Nile Basin DSS

Inception Report

ii

Appendix D

Software Architecture Document

5.2.3 Optimizer Component .. 76
5.2.3.1 Implications ... 79
5.3 Component Interactions .. 79
5.3.1 Run model setup .. 80
5.3.2 Linked models .. 84
5.3.3 MCA ... 87
5.3.4 Ensemble modelling ... 90
5.3.5 Optimization ... 93

6 VIEWPOINT: SYSTEM USE ... 97
6.1 User profiles and permissions ... 97
6.1.1 User groups ... 97
6.1.2 Study groups .. 98
6.1.3 Functionality permissions ... 98
6.1.4 Data permissions ... 99
6.2 DSS Front-end UI ... 99
6.2.1 Data Explorers ... 101
6.2.2 Data Views ... 101
6.2.3 Properties .. 102
6.2.4 Tools .. 103
6.2.5 Notifications ... 104
6.2.5.1 Message types – description ... 104
6.2.5.2 Informational messages ... 104
6.2.5.3 Warnings ... 105
6.2.5.4 Confirmations .. 105
6.2.5.5 User input errors .. 105
6.2.5.6 System errors .. 105
6.3 Using the application .. 105
6.3.1 Start-up and login ... 105
6.3.2 Navigation .. 105
6.4 Scripting ... 106
6.5 Scheduling and batch ... 108
6.6 Database Reports ... 110

7 VIEWPOINT: IMPLEMENTATION... 111
7.1 GIS Integration ... 111
7.1.1 Overall GIS Architecture... 111
7.1.2 GIS Storage ... 113
7.1.3 Geo-processing .. 114
7.1.4 GIS Visualization .. 115
7.2 Internationalization ... 115
7.2.1 GUI components – labels, texts .. 115
7.2.2 Regional settings – date time formats, decimal numbers 115

8 VIEWPOINT: IT INFRASTRUCTURE ... 117
8.1 Database .. 117
8.1.1 The Database .. 117
8.1.2 GIS Functionality .. 117
8.1.3 The Data Solution Technology Stack ... 117
8.1.4 Database Administration .. 120
8.2 Deployment .. 120
8.2.1 Client-server architecture ... 120
8.2.2 Configurations .. 121

Nile Basin DSS

Inception Report

iii

Appendix D

Software Architecture Document

8.2.2.1 Professional Edition ... 121
8.2.2.2 Corporate Edition ... 122
8.2.3 Processes .. 124
8.2.4 Operating Systems... 126
8.2.5 Hardware ... 126
8.2.6 Installation and setup Configuration ... 127

Figures

Figure 1.1 Required and provided interfaces (UML) .. 6
Figure 1.2 Usage dependencies (UML) ... 7
Figure 1.3 Sequence diagrams (UML) .. 7
Figure 1.4 Gane-Sarson diagram stereotypes ... 8
Figure 1.5 Sample Gane-Sarson data flow diagram .. 8
Figure 3.1 NB-DSS Highest-level interactions ... 11
Figure 3.2 NB DSS – first level break-down (UML) ... 11
Figure 5.1 NB DSS Components .. 37
Figure 5.2 NB DSS - helicopter view of components (UML) .. 38
Figure 5.3 Shell and Application components (UML) ... 38
Figure 5.4 Application, Modules and Tools components (UML) ... 39
Figure 5.5 Discovering and enabling Modules (UML) .. 39
Figure 5.6 Shell and UI components (UML) .. 41
Figure 5.7 Discovering and enabling explorer windows (UML) .. 42
Figure 5.8 Module architecture .. 44
Figure 5.9 Sub-components (UML) ... 47
Figure 5.10 UI components and modules (UML) ... 48
Figure 5.11 Cross-manager component referencing (simplified) (UML) 49
Figure 5.12 The Model Tools (UML) ... 50
Figure 5.13 The model adapters (UML) .. 51
Figure 5.15 Data flow when registering a model (Gane-Sarson) ... 53
Figure 5.16 Run Scenario (UML) .. 55
Figure 5.17 Run scenario data flow (Gane-Sarson) .. 57
Figure 5.18 Accessing data from another module (UML) .. 60
Figure 5.19 Conceptual data model for GIS features (UML) .. 62
Figure 5.20 Conceptual data model for Time series (UML) ... 63
Figure 5.21 Conceptual data model for Scenarios (UML) .. 64
Figure 5.22 Conceptual data model for Meta data definition (UML) 65
Figure 5.23 Conceptual data model for Meta data (UML) .. 65
Figure 5.24 Conceptual Hydro object data model based on the GIS pattern (UML) 66
Figure 5.25 Conceptual Hydro object data model based on a Schema pattern (UML) 66
Figure 5.26 Table data based on a static data model (UML) ... 68
Figure 5.27 Table data based on a Schema pattern data model (UML) 68
Figure 5.28 Data compartments and studies ... 69
Figure 5.29 Logically based partitioning (UML) ... 70
Figure 5.30 Logically based partitioning based under the Pivoting data model pattern (UML)
 70
Figure 5.31 Data access through the DAO pattern (UML) ... 71
Figure 5.32 Creating ensemble scenario (UML) .. 73
Figure 5.34 Running a scenario based on a linked model (UML) .. 75
Figure 5.35 Creating an Optimisation scenario (UML) ... 77

Nile Basin DSS

Inception Report

iv

Appendix D

Software Architecture Document

Figure 5.37 Setting up and running the Lake Victoria model (UML) 83
Figure 5.39 Creating alternative models and linking them, part 2/2 (UML) 86
Figure 5.40 MCA analysis (UML) .. 89
Figure 5.41 Ensemble modelling, part 1/2 (UML) .. 91
Figure 5.42 Ensemble modelling, part 2/2 (UML) .. 92
Figure 5.43 Optimization (UML) .. 95
Figure 6.1 The DSS Front-end Shell UI ... 100
Figure 6.2 Example of Data Explorer window .. 101
Figure 6.3 Example of a Data View window .. 102
Figure 6.4 The Properties window ... 103
Figure 6.5 The Tools window .. 104
Figure 6.6 Application, Modules and Tools components (UML) ... 107
Figure 6.7 Sample script ... 107
Figure 6.8 Concept of scheduling and batch ... 109
Figure 7.1 Location of GIS functionality on the baseline architecture 112
Figure 7.2 Query for spatial data ... 114
Figure 8.1 NB DSS tiers (simplified) (UML) ... 118
Figure 8.2 Technology stack (UML) .. 119
Figure 8.3 Overall NB DSS de-composition (UML) .. 121
Figure 8.4 Professional edition (UML) ... 121
Figure 8.5 Corporate edition - deployment type A (UML) .. 122
Figure 8.6 Corporate edition - deployment type B (UML) .. 123
Figure 8.7 DSS Front-end Processes (UML) ... 124
Figure 8.8 DSS Proxy component process (UML) ... 124
Figure 8.9 DSS Database processes (UML) ... 125
Figure 8.10 Model Tools processes (UML) ... 125
Figure 8.11 Model Tools UI processes (UML) ... 125

Tables

Table 1.1 Terminology ... 3
Table 4.1 Use cases, functional and software components .. 13
Table 4.2 Software component descriptions .. 21
Table 4.3 Software components and use case mapping .. 22
Table 4.4 Software components and requirement mapping ... 25
Table 5.1 Application component interfaces ... 40
Table 5.2 Shell component interfaces .. 42
Table 5.3 Modules ... 44
Table 5.4 Module sub-components .. 47
Table 5.5 Model Tool components interfaces ... 57
Table 5.6 Data categories .. 61
Table 5.7 Data access interfaces ... 71
Table 5.8 Selected steps from UC-01 .. 82
Table 5.9 Selected steps from UC-02 regarding linked models .. 84
Table 5.10 Selected steps from UC-02 regarding MCA ... 87
Table 5.11 Selected steps from UC-03 regarding ensemble modelling 90
Table 5.12 Selected steps from UC-04 regarding optimization... 93
Table 8.1 Processes .. 125

file:///C:/Data/SharePoint%20Drafts/Appendix_D_DSS_Architecture%5b1%5d_v2.docx%23_Toc254872392

Nile Basin DSS

Inception Report

1

Appendix D

Software Architecture Document

1 INTRODUCTION

This document constitutes one of the deliverables of the Inception Phase. According to

the Terms of Reference (TOR) /1/ the document shall focus on the overall system archi-

tecture, which will be subject to client approval before proceeding further into the sub-

sequent development cycles.

1.1 Scope

The scope of the software architecture document is to provide a design and technical

specification of the overall system architecture of the NB DSS system. This implies that

the document does not provide a detailed analysis or design of the components consti-

tuting the system.

Software architecture is a term that conveys different connotations for different people.

Some people might picture a very detailed blue print of the inner mechanisms of a sys-

tem others very high-level descriptions of the technologies and concepts (“patterns”)

applied. This software document aims at following the definitions provided by the

Software Engineering Institute (SEI).

Software architecture is a sketchy map of the system. Software architecture describes the

coarse grain components (usually describes the computation) of the system. The connec-

tors between these components describe the communication, which are explicit and pic-

tured in a relatively detailed way. In the implementation phase, the coarse components

are refined into "actual components", e.g., classes and objects. In the object-oriented

field, the connectors are usually implemented as interfaces.

Wahab Ahmen, www.sei.cmu.edu/architecture/start/community.cfm

Given this definition, the document demonstrates to the Client how the system will be

decomposed into components and how these components interact with each other to

provide the required functionality outlined in the Software Requirement Specification

(SRS) /2/. The design of the individual components will be conducted at the beginning

of the respective cycle for each release of the NB DSS system. However, in order to ac-

commodate NBI‟s request for fairly detailed information concerning model integration

certain aspects have been described in a level of detail similar to a implementation de-

sign.

1.2 How to read this document

This document aims at describing, at a high level, how the system defined in the SRS

/2/ will be designed. The reader therefore will gain a better understanding of the de-

scriptions in this document if the SRS is read beforehand.

The SRS focussed on the functional and non-functional requirements stated in the /1/

and on the “4+1” use cases, see /3/. Based on this information the SRS established (see

/2/) functional components – or logical groups of functionality. The software architec-

ture presented in this document extends the functional components into software com-

ponents.

Nile Basin DSS

Inception Report

2

Appendix D

Software Architecture Document

The document presents the software architecture in the following order:

 Chapter 1 Introduction, this chapter provides a brief introduction including

scope of the document and list of terminology.

 Chapter 2 Viewpoint outlines the viewpoints addressed in the document, i.e. the

way the descriptions and discussions of the system are organized.

 Chapter 3 Architectural Overview provides an overview of the system and iden-

tifies the software components that will constitute the system.

 Chapter 4 Software components describes how the functional and non-functional

requirements, the “4+1” use cases and the functional components established in

/1/ have been used to defined the software components

 Chapters 5 through 7 provide the architecture descriptions for the following 4

viewpoints – logical view, system use, implementation and infrastructure as-

pects.

The document makes use of various types of diagrams in order to best possible convey

the description of the system. Some of these diagrams are formatted according to the

UML specifications and such diagrams are marked with a “UML” indication in the fig-

ure caption. The use of UML is briefly described in Section 1.5.

The document refers at several places to documents referenced in Chapter 1.3. When-

ever text is directly quoted from these documents, it will be shown in italics.

A document reference is made using a /n/ notation where the „n‟ indicates the reference

number. I.e. /1/ refers to the Terms of Reference.

1.3 References

/1/ The Contract entered between DHI and NBI. /DHI and NBI, May 2009

/2/ The Software Requirement Specification (Inception Report, Appendix C). /DHI, De-

cember 2009

/3/ “Essential Technical Diagrams and key information for assessing design” as com-

municated to DHI during the Cairo workshop.

/4/ The “4+1” Use cases as communicated to DHI in e-mail on the 10
th

 of September

2009.

/5/ Design Patterns for Relational Databases by Eugenia Stathopoulou, Panos Vassili-

adis, University of Ioannina.

1.4 Terminology

The Terminology used in this document is listed in Table 1.1 below.

Nile Basin DSS

Inception Report

3

Appendix D

Software Architecture Document

Table 1.1 Terminology

Name Description

Actor

In UML an actor specifies a role played by a user or any other system that

interacts with the subject.

Adapter In the context of NB DSS a piece of software that makes it possible for the

DSS Front-end and Model Tools to integrate. The name originates from the

software engineering Adapter pattern.

The Adapter pattern translates one interface of a component into a com-

patible one (see e.g http://en.wikipedia.org/wiki/Adapter_pattern). In this

case part of the model tool interface is translated into an interface that the

NB DSS can leverage

BLOB Binary Large Object. In a database BLOB fields can be added, changed,

and deleted. However, they cannot be searched and manipulated with

standard database commands.

Catchment A catchment is an area where water is collected by the natural landscape.

In a catchment, all rain and run-off water eventually flows to a creek, river,

lake or ocean, or into the groundwater system.

CBA Cost-benefit analysis.

Component, func-

tional

A logical grouping of related functionality.

Component, soft-

ware

An identifiable part of a larger program. In software engineering a compo-

nent is a reusable program building block that can be combined with other

components in the same or other computers in a distributed network to form

an application.

CRUD Create, Read, Update and Delete – the canonical database interaction

types.

DAO Data Access Object, typically referring to a programming pattern for interac-

tion with a database. See http://en.wikipedia.org/wiki/Data_access_object

DSS Decision Support System.

DSS Front-end The custom Windows application developed to the NB DSS. Serves as the

front-end (entry point) of the NB DSS.

Ensemble In this context an Ensemble is equivalent to a group of time series typically

used as inputs for an ensemble simulation

Ensemble model-

ling

Refer to applying mathematical model with ensembles of time series as in-

put

Ensemble sce-

nario

Refer to defining scenarios using ensembles of time series as input

GUI Graphical user interface, synonymous with UI.

Hydraulic Model,

Hydrological

Model,

Water balance

and allocation

model

Mathematical models with a more specific scientific focus (see also Mathe-

matical Model)

Hydro Objects Hydro objects are entities related to modelling of water related processes,

e.g. reservoirs and irrigation schemes.

Nile Basin DSS

Inception Report

4

Appendix D

Software Architecture Document

Name Description

IDE-style user

interface

A UI style where multiple child windows reside under a single parent win-

dow. Child windows are dockable and collapsible and can be tabbed and

resized.

Interface A protocol or interface is what or how unrelated objects use to communicate

with each other.

IS Information System.

Layer A logical part of an application providing a set of specific functionalities.

Leaf use case The term leaf use case is usen in Chapter 3 to identify the most specific use

cases defined in the “4+1” use cases.

Management

Scenario

Describes the present or possible future conditions resulting from alterna-

tive water resources management and development strategies or changed

climatic conditions (See also Scenario)

Mathematical

Model

A set of mathematical expressions and logical statements combined in or-

der to simulate certain characteristics of the natural system. The “Model” in

this document refers to a Mathematical Model. A Mathematical model may

also consist of a number of linked models.

MCA Multi-criteria analysis.

Member A function or method in a software class or interface description.

Model Setup A model setup is a definition of all data required for a simulation, including

input data, configuration of the physical infrastructure, management strate-

gies, such as reservoir operation rules, and all output specifications.

Model Tool

A generalised mathematical model such as MIKE11 and MIKE BASIN. May

include proprietary as well as public domain systems.

Model Tool En-

gine

The engine is considered the full suite of executables and Dynamic Link

Libraries (dll) controlling the simulation of system behaviour, including pre-

and post-processing of Model Data and parameters and solving of the un-

derlying mathematical equations.

Model Tool User

Interface (UI)

The Model Tool UI gives access to the functionality of the Model Tool En-

gine.

Modelling System A suite of Model Tools.

Modelling System

UI

The Modelling System UI gives access to the functionality of the Modelling

System.

Module A module takes care of a specific well defined functionality within the DSS

front-end. An example of a module is the Timeseries Manager

NB DSS The complete DSS system delivered to the Nile Basin Initiative.

Parameter A parameter is a quantity characterizing a (physical or conceptual) property

of a system. Within the context of hydrologic mathematical models, exam-

ples of a parameter are hydraulic conductivity, channel rough-

ness/resistance, storage delay time, and time of concentration. A parameter

may or may not be constant in time.

Pivoting pattern This pattern describes a flexible way of modelling attribute-pair values in a

database schema, see /5/

PostGIS Extension to PostgreSQL for handling spatial data.

Nile Basin DSS

Inception Report

5

Appendix D

Software Architecture Document

Name Description

PostgreSQL Object-oriented relational database management system.

PROJ4 Cartographic Projections library

Reference Sce-

nario

Describes past conditions and is used for comparing impacts of present and

future water resources development and management strategies.

Scenario A Model Setup or a set of linked models designed to analyse a specific

combination of water resources development strategies and water re-

sources management strategies.

A scenario is typically used for simulation of conditions for ground water,

surface water, water quality, water allocation etc. under a given combination

of water resources development strategies, water resources management

strategies and climatic conditions.

Two principally different scenarios exist, namely reference scenarios and

management scenarios.

Schema pattern The Schema pattern is data model pattern where an entity is modelled

through a type identifier and an aggregated field. The aggregated field can

be validated through a type specific schema stored elsewhere in the data-

base. This pattern can be used for modelling entities that not necessarily

are known at system construction time. It makes it possible to extend a live

system with new types of entities. The pattern is not an officially known pat-

tern; but a pattern established by the Consultant

Simulation A time-varying description of certain behaviour of the natural system as

computed by the mathematical model. A simulation will produce outputs

referred to as Simulation Results.

SRTEXT An OpenGIS Consortium standard for representing of a spatial reference

system, based on WKT

Study A logical grouping of data, typically stored within a dedicated data com-

partment.

System Any structure, device, scheme or procedure, real or abstract, that interre-

lates in a given time reference, an input, cause, or stimulus, of matter, en-

ergy, or information and an output, effect, or response of information, en-

ergy or matter.

The natural sys-

tem

The entirety of the socio-economic, environmental/ecological and water re-

sources (hydrological) sub-systems and includes the hydrological cycle or

parts of it as we currently conceive it.

ThinkGeo

In this document shorthand for the MapSuite Desktop product from the

Company called ThinkGeo. The product is map control for rendering of spa-

tial data.

Tier Hardware where a specific layer is deployed.

UI User Interface.

UI object A software object (instance of a class) residing in the user interface part of

the software code.

UML Unified Modelling Language – A language for the specification, visualiza-

tion, construction, and documentation of the components of software sys-

tems.

Nile Basin DSS

Inception Report

6

Appendix D

Software Architecture Document

Name Description

Use case A use case is a description of how an actor will use a software code. It de-

scribes a task or a series of tasks that an actor will accomplish using the

software, and includes the responses of the software to the actions.

Variable A variable is a characteristic of the natural system that may be measured

and that may assume different numerical values at different times. It can be

a series of inputs and outputs from the model, but also a description of con-

ditions in some component of the model (state of the system).

Water Resources

Development

Strategy

A set of water management options that include structural changes to the

existing system such as the construction or modification of reservoirs and

irrigation schemes.

Water Resources

Management

Strategy

A set of water management options that include operational changes to the

system such as changes of operation rules for reservoirs.

WKB Well-known binary, an OpenGIS Consortium standard for GIS geometry

specification

WKT Well-known text, an OpenGIS Consortium standard for GIS geometry speci-

fication

1.5 Use of Diagrams

In this document, the notation describing the architecture is based on UML component

diagrams, UML sequence diagrams, conceptual data model diagrams expressed as UML

class diagrams and Gane-Sarson data flow diagrams. These diagrams will be further de-

tailed into UML class diagrams during the analysis and design stages of the three

planned development cycles.

1.5.1 UML Component Diagrams
This document uses UML 2.0 compliant component diagrams to describe the various

NB DSS components. The component diagrams strive to illustrate a high-level logical

view of the NB DSS by showing the structural relationships (interactions) between the

various NB DSS components.

A component defines its behaviour in terms of provided and required interfaces. The

provided interfaces are services offered to other components of the system, shown using

the “lollipop” symbol (see Figure 1.1). Required interfaces are services that the compo-

nent expects from its environment (i.e., other components that it interacts with), shown

using the “socket” symbol (see Figure 1.1).

Scenario

Manager IModelAdapterIScenarioManager

Figure 1.1 Required and provided interfaces (UML)

Nile Basin DSS

Inception Report

7

Appendix D

Software Architecture Document

Components can be connected by usage dependencies. A usage dependency is a rela-

tionship where one component requires another component for its full implementation.

A usage dependency is shown as a dashed arrow with an arrowhead pointing from the

dependent component to the one of which it is dependent (see Figure 1.2).

Model Adapter Model Tool

Figure 1.2 Usage dependencies (UML)

1.5.2 UML Sequence Diagrams
The document uses UML 2.0 compliant sequence diagrams to describe the interactions

and dataflow between components. These diagrams illustrate the interactions between

components in the sequential order that those interactions occur. Time passes from top

to bottom. The interaction starts near the top of the diagram and ends at the bottom.

In a sequence diagram, a component is displayed as an annotated rectangle. Below the

component, its lifeline extends for as long as the target exists. The lifeline is displayed

as a vertical dashed line.

When a target sends a message to another target, it is shown as an arrow between their

lifelines. A closed and filled arrowhead signifies that the message is sent synchronously

whilst an open arrowhead is used to indicate that a message is sent asynchronously. Re-

turn values are shown using a dashed arrow from receiver to sender.

Sender Receiver

Synchronous message

Asynchronous message

Returned value

Figure 1.3 Sequence diagrams (UML)

1.5.3 Gane-Sarson Data Flow Diagrams
The document uses compliant Gane-Sarson diagrams to express data flows between

processes in the system. These diagrams show the storage, exchange, and alteration of

data and resources throughout the diagram.

A Gane-Sarson diagram is built from just 4 stereotypes as shown below in Figure 1.4

Nile Basin DSS

Inception Report

8

Appendix D

Software Architecture Document

Represents an interface, e.g. a user

Represents a process

Represents a data store

Represents a data flow

Figure 1.4 Gane-Sarson diagram stereotypes

A self-explanatory example is shown in Figure 1.5.

Student

Take certification

course

Certification

Application

Take Certification

Test

Student Record

Training and

Certification

Board

request
courseEnrollment

testresult

approval

Figure 1.5 Sample Gane-Sarson data flow diagram

Nile Basin DSS

Inception Report

9

Appendix D

Software Architecture Document

2 VIEWPOINTS

This document presents the proposed NB DSS software architecture from the following

four viewpoints:

1. The Logical Viewpoint, which is a logical representation of the key compo-

nents within the software system and their interactions. It provides overview

only and does not describe the presented components in more detail.

2. The System Use Viewpoint, which addresses the system from an end-user point

of view. This viewpoint responds to the questions: How will the interaction

with the system be, how can it be integrated with other systems – or new sys-

tems – within an organisation?

3. The Implementation Viewpoint, which addresses the system from a software

developer point of view. It responds to the question: What technologies are

used, what applications tiers exist, what client-server model is being used etc.?

4. The Infrastructure Viewpoint, which defines the way the actual software pro-

grams (processes) are instantiated and deployed on the physical hardware and

how the processes communicate with each other.

Compared with the well-known 4+1 software architecture approach, the logical view-

point correspond to the “4+1” logical viewpoint, the implementation view corresponds

to the “4+1” implementation view
1
, the infrastructure viewpoint corresponds to a com-

bination of the “4+1” deployment and process view points. The System Use view point

as included in the SRS does not have a corresponding view in the “4+1” architecture

approach. The “4+1” Scenarios view point corresponds to the SRS document.

1
 This viewpoint is strictly speaking not part of an overall architecture and is not represented in great detail in this

document. It will be addressed further in the detailed analysis and design phase.

Nile Basin DSS

Inception Report

10

Appendix D

Software Architecture Document

3 ARCHITECTURE OVERVIEW

This chapter explains the Consultants vision for the NB DSS and – at the same time –

defines the major guiding architectural principles. Later chapters present the different

aspects of the architecture in more detail.

3.1 Vision

DSS is an abbreviation for Decision Support System which in many ways is synony-

mous with business intelligence. Wikipedia has the following definition of business in-

telligence.

Keywords in this definition are:

 Acquire a better understanding

 Knowledge developed from collected information

 Provide predictive view

 Predictive analysis

The NB DSS system will provide historical, current, and predictive views of business

operations using data collected into its database. It will have functionality that makes it

possible to analyse the data, to perform what-if analyses through its modelling capabili-

ties and to condense and aggregate its outputs into reports for later decision making.

3.2 Architecture overview

Figure 3.1 defines the NB DSS in terms of highest-level interactions.

Refers to skills, technologies, applications and practices used to help a business acquire
a better understanding of its commercial context. Business intelligence may also refer
to the collected information itself and the knowledge developed from this information.

BI applications provide historical, current, and predictive views of business operations.
Often these applications use data gathered into a data warehouse or a data mart.
Occasionally the applications work from operational data. Common functions of
business intelligence applications are reporting, OLAP, analytics, data mining, business
performance management, benchmarks, and predictive analysis.

/ c.f. wikipedia

Nile Basin DSS

Inception Report

11

Appendix D

Software Architecture Document

Figure 3.1 NB-DSS Highest-level interactions

At this level the system is a black-box supporting the following types of interactions:

 User interactions – representing a user working with the system, typically for

preparing and analysing data, setting up and running scenarios

 External data sources – representing loading of data into the NB DSS database

 Automated interactions – representing the use of the system as a programming

platform, e.g. scripting or coding against the public programmable interfaces

provided by the system

Output from the system typically is reported in various formats.

At a level deeper the system reveals itself as an integration platform consisting of the

following 3 high-level components (Figure 3.2).

Figure 3.2 NB DSS – first level break-down (UML)

The figure identifies three top-level components: The DSS Front-end, the model tools

and the DSS database. The guiding architectural principles in designing these compo-

nents and their interactions are briefly described below.

It is the Consultants experience that flexibility with respect to model tools is very im-

portant. Model tools are becoming increasingly advanced and multi-disciplinary and a

NB DSS

User interactions

External

Data sources

Reports

Automated

interactions

 NB DSS

DSS Front-end

DatabaseModel Tools

Nile Basin DSS

Inception Report

12

Appendix D

Software Architecture Document

DSS system needs to be able to integrate with many different kinds of such tools, not all

of which are known at the time of the initial system development.

Guiding architectural principle: Establish well-defined interfaces for inte-

grating model tools with the DSS Front-end.

The DSS Front-end is where the Information Management part of the system is situated,

i.e. the capabilities for processing and analysing data, for creating scenarios, performing

multi-criteria analysis etc. A proper DSS Front-end should be designed it such a way

that it can be extended with new functionality over time by adding new components to

the live system. This includes, for example, adding functionality for displaying simu-

lated results on top of Google Maps or integrating the NB DSS with AutoCAD for cou-

pling infrastructure data with structural design drawings.

Guiding architectural principle: Establish well-defined interfaces and pro-

tocols for DSS Front-end modules. Distributing DSS Front-end functionality

amongst the software components should strictly adhere to the separation of

concern patterns – similarly with the component internals.

The database in the NB DSS system is a data warehouse, i.e. a consolidation of all ap-

plicable water resources data related to the mission of the Nile Basin Initiative. This

also implies that, over time, the database will grow very large. In order to prevent users

of the system from „drowning‟ in data, the database should provide logical views of the

data entities that are of particular interest for the specific work situation.

Guiding architectural principle: Apply the data warehouse principle of pro-

viding (logically or physically) data mart
2
s for specific, subject oriented

data designed to answer specific questions to a specific set of users.

Users of the system will have varying roles in their interactions with the system. One

user might be responsible for the modelling part in one study, the data part in another,

reviewer in a third and study manager in a fourth. I.e. control of access to data can eas-

ily become unmanageable if this has to be based on a direct mapping between user and

data entities.

Guiding architectural principle: Base access control on work roles seen in

relation to specific studies.

2
 For the NB DSS the term Study is used

Nile Basin DSS

Inception Report

13

Appendix D

Software Architecture Document

4 SOFTWARE COMPONENTS

The SRS /2/ identifies numerous required functional components, i.e., a logical group-

ing of functionality. These functional components must be converted into actual soft-

ware components for the system design and implementation phases.

This chapter explains how the functional components established in /2/ are converted

into software component.

4.1 Establishing Software Components

Establishing software components from requirements and use cases is not a linear proc-

ess. It requires iteration between design and sometimes even implementation and analy-

sis of requirements and use cases.

As part of this task, requirements and use cases were analyzed and converted into func-

tional components, experiences from previous projects were converted into patterns and

candidate designs were established. The candidate designs were evaluated against the

requirements and the use cases – and new iterations were performed to derive a final de-

sign.

Table 4.1 below shows how use cases and functional components were used to establish

the software components described in this chapter.

Note the use cases identified in /2/ and listed here for reference are subject for change

and clarification during the detailed analysis and design stages of the development cy-

cles.

Table 4.1 Use cases, functional and software components
3

Use case (id and

name)

Activities included Functionality

component

Software

component

001: Import time se-

ries

Import time series including geo-

referencing.

Time series Timeseries

Manager

002: Use time series

tool

Process a time series (into another

time series, a number or other out-

put).

Time series DSS Tools

003: Visualise time

series

Plot and/or tabulate.

Access meta information.

Time series Timeseries

Manager

004: Use table tool Create tabular structure – either as

tool output or manually.

Tables DSS Tools

005: Publish in report Insert content (text, table, plot, GIS)

in a report structure. Manually or

automatic.

Reporting Report Man-

ager

006: Visualise GIS

layer

Select and display GIS layer on

map – define symbology to use.

GIS GIS Manager

Map Control

3
 The use cases are maintained in a database and the numbers used in Table 4.1 are the primary id in

the database table. This is the reason why the numbers are not in ascending order and have wholes.

Nile Basin DSS

Inception Report

14

Appendix D

Software Architecture Document

Use case (id and

name)

Activities included Functionality

component

Software

component

007: Inspect GIS

layers

Access properties of features, in-

cluding meta data.

GIS

Meta data

GIS Manager

Meta Data

Manager

008: Filter time se-

ries

Make filter to select one or more

time series from the full available

list.

Time series Timeseries

Manager

009: Inspect time

series

Access properties, meta data and

data to assess content of a time

series.

Time series

Meta data

Timeseries

Manager

Meta Data

Manager

010: Use rainfall run-

off model

Calculate runoff from precipitation,

evaporation etc. Special case of

“Run Scenario”.

Scenarios

Model Tools

Scenario

Manager

Model Tools

011: Setup MIKE

BASIN

Define a MIKE BASIN setup in the

model tool, with all inputs, parame-

ters and outputs defined. Usually

involves calibration of parameters

by running with historical inputs and

comparing outputs with historical

measurements.

(Special case of “setup model in

model tool”).

Model Tools Model Tools

013: Calibrate MIKE

BASIN

Sub-set of “Setup MIKE BASIN”. Model Tools Model Tools

014: Register model Define attributes in the NB DSS for

the system to “know” a model

setup, i.e. inputs, outputs, Hydro

Objects.

Scenarios Scenario

Manager

015: Create scenario Define the actual inputs to use for a

simulation and the outputs to ex-

tract from the simulation.

Scenarios Scenario

Manager

Model Linker

016: Run scenario Prepare the setup and inputs, exe-

cute the model tool and retrieve the

outputs from a simulation.

Scenarios Scenario

Manager

Model linker

018: Visualise tables Present information in tabular form. Tables Table Man-

ager

019: Create study Define the data compartment used

to encapsulate information related

to a specific investigation/study.

Studies Study Man-

ager

020: Manage study Edit properties of the study. Set

user permissions to study data.

Studies Study Man-

ager

021: Import GIS data Import GIS data from external

sources (different formats) into the

DSS database.

GIS GIS Manager

Nile Basin DSS

Inception Report

15

Appendix D

Software Architecture Document

Use case (id and

name)

Activities included Functionality

component

Software

component

021: Visualize GIS

data

The same as “Visualize GIS layer”. GIS GIS Manager

023: Edit GIS data Edit properties of GIS layer and

features. Edit meta data for GIS

layer.

GIS GIS Manager

024: Setup semi-

distributed rainfall-

runoff model (MIKE

SHE light)

Define a MIKE SHE Light setup in

the model tool, with all inputs, pa-

rameters and outputs defined. Usu-

ally involves calibration of parame-

ters by running with historical inputs

and comparing outputs with histori-

cal measurements. (Special case of

“setup model in model tool”).

Model Tools Model Tools

025: Register MIKE

BASIN model

Define attributes in the NB DSS for

the system to “know” a MIKE

BASIN model setup, i.e. inputs,

outputs, Hydro objects.

(Special case of “register model”).

Scenarios Scenario

Manager

026: Use GIS tool Perform GIS processing of data in a

map (e.g. query by feature, area

calculations).

GIS DSS Tools

027: Create linked

model

Define links (output to input) be-

tween sequentially run models.

Linked models Scenario

Manager

Model Linker

028: Calibrate model Adjust model parameters to make

the model fit historical conditions

with known inputs and output.

Model Tools Model Tools

032: Clone and mod-

ify MIKE BASIN

model and scenario

Create a copy of all DSS database

definitions for a MIKE BASIN model

and associated scenarios. Edit the

copied model setup in the MIKE

BASIN model tool. Re-register the

model setup and correct/adjust

definitions in the database reflect-

ing the differences following the

edit. Highlight/adjust/correct sce-

nario definitions to make them

match the new setup.

(Special version of “Clone and

modify model and scenario”).

Scenarios

Model Tools

Scenario

Manager

Model Tools

034: Setup MIKE 11

model

Define a MIKE 11 setup in the

model tool, with all inputs, parame-

ters and outputs defined. Usually

also involve calibration of parame-

ters by running with historical inputs

and comparing outputs with histori-

cal measurements. (special case of

“setup model in model tool”).

Model Tools Model Tools

Nile Basin DSS

Inception Report

16

Appendix D

Software Architecture Document

Use case (id and

name)

Activities included Functionality

component

Software

component

036: Register MIKE

11 model

Define attributes in the NB DSS for

the system to “know” a MIKE 11

model setup, i.e. inputs, outputs,

HydroObjects.

(Special case of “register model”).

Scenarios Scenario

Manager

038: Define indicator Process of establishing the charac-

teristics of a variable to enter a fur-

ther analysis. The variable may be

a result of a GIS tool, a time series

tool or a macro calculation. {This

definition is performed outside the

NB DSS by subject matter experts}

Indicator Analysis

Manager

039: Use MCA indi-

cator tool

Establish definition of indicators

including references to and func-

tions on underlying data.

Indicator Analysis

Manager

040: Run MCA Access definitions, properties and

functionality to perform a Multi Cri-

teria Analysis (MCA).

MCA MCA

041: Take decision The process of the user assessing

available information and making a

decision based upon that.

User action

042: Use CBA Perform Cost-Benefit Analysis

(CBA), define indicators, perform

data conversions.

CBA CBA

043: Plan scenarios Process of identifying the condi-

tions to apply to the model and/or

the modification to the models.

User actions

044: Clone and mod-

ify model and sce-

nario

Create a copy of all DSS database

definitions for a model setup and

associated scenarios. Edit the cop-

ied model setup in the model tool.

Re-register the model setup and

correct/adjust definitions in the da-

tabase reflecting the differences

following the edit. High-

light/adjust/correct scenario defini-

tions to make the match the new

setup.

Scenarios Scenario

Manager

045: Setup ensemble

scenario

Define a scenario for running a

model setup using an ensemble of

input time series and performing

post-processing.

Ensembles

Scenarios

Timeseries

Manager

Scenario

Manager

Ensemble

Modeler

Nile Basin DSS

Inception Report

17

Appendix D

Software Architecture Document

Use case (id and

name)

Activities included Functionality

component

Software

component

046: Run ensemble

scenario

Run the model setup and apply the

ensemble of time series. Execute

defined post-processing.

Ensembles

Scenarios

Timeseries

Manager

Scenario

Manager

Ensemble

Modeler

047: Compare sce-

narios

Select (manually or automatically)

comparable information from two

executed scenarios and presenting

the output.

Scenarios Scenario

Manager

Timeseries

Manager

048: Export study

Export all data in a study to files in

defined exchange format.

Studies Study Man-

ager

050: Import Study Import exported study data into the

DSS database, restoring the origi-

nal structure.

Studies Study Man-

ager

051: Use GIS catch-

ment delineation tool

Use advanced GIS tool to make

catchment delineation.

GIS GIS Manager

052: Edit time series Modify time series data in data-

base.

Time series Timeseries

Manager

053: Assess data

availability

Evaluate whether available data are

sufficient for the purpose at hand.

Time series

GIS

Tables

Meta data

Timeseries

Manager

GIS Manager

Table Man-

ager

Meta Data

Manager

054: Define scenario Same as “Plan scenario”. User actions

055: Setup CBA Configure CBA tool with respect to

parameters and links to data.

CBA CBA

056: Define optimiza-

tion scenario

Special case of “define Scenario”

dealing with planning how to use

optimization with a model setup.

Optimizations Scenario

Manager

Optimizer

057: Create optimi-

zation scenario

Configure a scenario in the NB

DSS to run a model with respect to

optimization (inputs, objectives,

constraints, methods).

Optimizations Scenario

Manager

Optimizer

058: Run optimiza-

tion scenario

Run the model setup and apply the

optimization scenario definitions

and data.

Optimizations

Scenario

Manager

Optimizer

060: Establish un-

derstanding of model

tool

Study and understand the data

structures of and available inter-

faces to data of a model

setup/model tool.

User actions

Nile Basin DSS

Inception Report

18

Appendix D

Software Architecture Document

Use case (id and

name)

Activities included Functionality

component

Software

component

061: Design model

tool adapter

Write specification for a model tool

adapter (what information it be able

to share/exchange with the DSS

Front-end).

User actions

062: Analyse model

tool inter-

communication op-

tions

Understand the capabilities of the

possibilities for model-to-model

communication.

User actions

062:Analyse of

IModelAdapter

Understand the capabilities of the

interface to model adapters.

User actions

064: Code model tool

adapter

Program and unit test code. User actions

065: Change model

tool in order to en-

able model tool to

model tool communi-

cation

Place and execute change request

s to 3rd part modelling software in

order to match NB DSS integration

requirements.

User actions

066: Test model reg-

istration

Verify if the use of IModelAdapter

for configuration works with an ac-

tual model setup.

Scenarios

Model Tools

Scenario

Manager

Model Tools

068: Test create

scenario

Verify that the DSS Front-end can

use the registration details for cre-

ating a scenario from the model

setup.

Scenarios Scenario

Manager

070: Test run sce-

nario

Verify that execution of a model

setup with scenario definitions is

possible – and successful.

Scenarios Scenario

Manager

071: Test model link-

age

Verify that model linkage is possible

with the new adapter

Linked models Scenario

Manager

072: Test model in-

ter-communication

Check if programmed model tool

changes meet expectations with

respect to time-step control of

model linkage.

Linked models Scenario

Manager

073: Import table Create table structure and Import

tabular data for storage in data-

base.

Tables Table Man-

ager

074: Create time se-

ries

Establish a time series with proper-

ties, data and meta data.

Time series Timeseries

Manager

075: Create hydro

object

Link tabular data with a hydro ob-

ject.

Hydro objects Hydro Object

Manager

076: Use soil erosion

tool

Use advanced time series tool to

calculate soil erosion.

Time series DSS Tools

077: Link time series

to feature

Create a geo-reference for a time

series.

GIS GIS Manager

078: Edit hydro ob-

ject

Edit a hydro object instance. Hydro objects Hydro Object

Manager

Nile Basin DSS

Inception Report

19

Appendix D

Software Architecture Document

Use case (id and

name)

Activities included Functionality

component

Software

component

079: Use demand

calculator tool

Use advanced time series tool to

demands and loads.

Time series DSS Tools

080: Use ensemble

generator tool

Use advanced time series tool to

establish an ensemble of time se-

ries.

Ensembles DSS Tools

081: Setup MCA Define parameters and data links in

MCA tool.

MCA MCA

082: Calibrate MIKE

11 model

Sub-set of “Setup MIKE 11”, defin-

ing the parameters of a model to fit

historical events.

Model Tools Model Tools

085: Edit model The process of modifying the model

setup in the model tool.

Model Tools Model Tools

086: Run CBA Start the CBA and access defini-

tions, properties and functionality

via the UI.

CBA CBA

088: Export time se-

ries data

Export time series data from the NB

DSS database to the file system

Time series Timeseries

Manager

089: Export GIS data Export GIS data from the NB DSS

database to the file system

GIS GIS Manager

In addition to the software components listed in Table 4.1, the following components

were identified during the iterations between analysis and design.

 Shell

 Application

 Model tool adapter

 Database

 DSS Proxy

 Script Manager

 System administration

All software components will be described in the following section.

4.2 Software Component Descriptions

Nile Basin DSS

Inception Report

20

Appendix D

Software Architecture Document

Table 4.2 describes the software components identified during the software analysis and

design phase:

Nile Basin DSS

Inception Report

21

Appendix D

Software Architecture Document

Table 4.2 Software component descriptions

Software Component Description

Analysis Manager The Analysis Manager provides a framework for analysis tools like

MCA and CBS. Common facilities like Indicators reside in this

component.

Application The application component is the top level functional component as

it via the modules represent en entry point for functionality in the

system.

CBA The CBA component encapsulates the CBA analysis tool

Database The Database component implements the physical database

DSS Proxy The DSS Proxy component implements a piece of the NB DSS al-

lowing distribution of batch tasks.

DSS Tools The DSS Tools is a common component including all implemented

tools (time series tools, GIS tools, analysis tools etc.) as well as a

framework for further expansion of the system with respect to tools.

Ensemble Modeller This component assists the Scenario Manager in definition scenar-

ios using time series ensembles

GIS Manager GIS Manager provides GIS layer management functionality but

primarily handling of data access for GIS data. Visualisation of GIS

data is in the hands of the Map Component and GIS tools are in

the DSS Tools component

Hydro Object Manager The Hydro Object Manger controls creation, editing, searching for

and deleting of Hydro Objects.

Map Component The Map Component implements the visualisation of GIS data (cur-

rently ThinkGeo) in a common manner

MCA The MCA component encapsulates the advanced analysis tool,

MCA

Meta data Manager The Meta Data Manager defines a common framework for handling

meta data across entities in the system. A Meta data browser also

resides here.

Model Linker This component assists the Scenario Manager in handling defini-

tion and execution of linked models and scenarios

Model Tool Adapter The Model Tool Adapter component assist the Model Tools com-

ponent in encapsulating model specific logic, making model tools

“pluggable” into the NB DSS

Model Tools The Model Tools component contains the actual model tools in the

system(whether known or unknown at time of delivery)

Optimizer This component assists the Scenario Manager in handling defini-

tions and execution of optimization scenarios

Report Manager The Report Manager allows a user to create and handle documents

and pieces of documents.

Scenario Manager The Scenario Manager provides functionality to register models,

define (and edit) scenarios, execute and compare scenarios. Sub-

components will provide specialized logic where required (e.g.

Optimizer)

Script Manager The Script Manager controls creation, storage and execution of

scripts wherever they are used in the application.

Nile Basin DSS

Inception Report

22

Appendix D

Software Architecture Document

Software Component Description

Shell The Shell component provides the framework for the application to

interact with the Modules. It ties application, user interface and

module functionality together. It contains the executables of the

system.

Study Manager The Study Manager gives an interface for the user to administer

data and user permissions for logical data compartments.

System Administration This component is used for system administration tasks like adding

new users to the system and changing access control lists.

Table Manager The Table manager contains logic to support handling of tabular

data (i.e. rating curves) in a manner allowing users to specify layout

and content and the application to refer and operate on the data.

Timeseries Manager The Timeseries Manager provides time series management func-

tionality. This includes time series data access, logic related to time

series and visualisation of time series.

Time series tools are NOT part of this component but part of the

DSS Tools component.

4.3 Software Components and Use Case Mapping

Table 4.3 shows the mapping of software components and use cases. Not all compo-

nents have been derived from or touched by use cases. Some are identified from looking

at the functional requirements; others arise from a need to isolate certain functionality in

the application design.

Table 4.3 Software components and use case mapping

Software Component Use Case

Analysis Manager Define indicator

Use indicator tool

Application

CBA Run CBA

Setup CBA

Use CBA

DSS Proxy

DSS Tools Use GIS catchment delineation tool

Use GIS tool

Use table tool

Use time series tool

Ensemble Modeller Run ensemble scenario

Setup ensemble scenario

GIS Manager Assess data availability

Edit GIS data

Nile Basin DSS

Inception Report

23

Appendix D

Software Architecture Document

Software Component Use Case

Import GIS data

Link time series to feature

Visualize GIS data

Hydro Object Manager Create hydro object

Edit hydro object

Map Component

MCA Run MCA

Setup MCA

Meta Data Manager Assess data availability

Inspect GIS layers

Inspect time series

Model Linker Create linked model

Create scenario

Run scenario

Test model inter-communication

Test model linkage

Model Tools Calibrate MIKE 11

Calibrate MIKE BASIN

Calibrate model

Clone and modify MIKE BASIN model and scenario

Edit model

Setup MIKE 11 model

Setup MIKE BASIN

Setup semi-distributed rainfall-runoff model (MIKE SHE light)

Test model registration

Use rainfall runoff model

Model Tool Adapter

Optimizer Create optimization scenario

Define optimization scenario

Run optimization scenario

Report Manager Publish in report

Scenario Manager Clone and modify MIKE BASIN model and scenario

Clone and modify model and scenario

Clone DSS model setup and scenario

Compare scenarios

Nile Basin DSS

Inception Report

24

Appendix D

Software Architecture Document

Software Component Use Case

Create linked model

Create optimization scenario

Create scenario

Define optimization scenario

Modify DSS scenario

Register MIKE 11 model

Register MIKE BASIN model

Register model

Run ensemble scenario

Run optimization scenario

Run scenario

Setup ensemble scenario

Test create scenario

Test model inter-communication

Test model linkage

Test model registration

Test run scenario

Use rainfall runoff model

Script Manager

Shell

Study Manager Create study

Export study

Import Study

Manage study

System Administration

Table Manager Assess data availability

Import tables

Visualise tables

Timeseries Manager Assess data availability

Create time series

Edit time series

Filter time series

Import time series

Inspect GIS layers

Nile Basin DSS

Inception Report

25

Appendix D

Software Architecture Document

Software Component Use Case

Inspect time series

Run ensemble scenario

Setup ensemble scenario

Use demand calculator tool

Use ensemble generator tool

Use soil erosion tool

Visualise time series

4.4 Software Components and Requirement Mapping

Table 4.4 shows the mapping between software component and requirements. The

Comments column in the table is used to identify issues that have to be resolved during

the detail analysis and design phases.

Table 4.4 Software components and requirement mapping

Software Component Requirement

Shell 2.1.1 Graphical User Interface (GUI)

2.1.1.1 Interactive, fully menu driven

graphical, hyperlinked

2.1.1.1 (1) The GUI shall be as powerful and

interactive as possible for creating,

locating and inter-connecting the

various components.

2.1.1.1 (2) The GUI shall allow data entry by

users with features to add, modify

and delete data according to prede-

fined user privileges

2.1.1.1 (3) The GUI shall have a menu struc-

ture which is always evident to the

user. The system shall provide clear

feedback regarding the...

2.1.1.2 Multi-language support (English,

French)

2.1.1.3 On-line, context-sensitive help facil-

ity with an online hierarchical &

cross-linked help system in HTML

2.1.1.4 (1) The GUI shall be consistent with

regard to screen layouts, mes-

sages, text and graphic positions

etc. to ease learning of the ...

2.1.1.4 (2) The GUI shall have readable text

that is easy to understand, even for

non-native speakers.

2.1.1.4 (3) The GUI shall have readable text

that is easy to understand, even for

Nile Basin DSS

Inception Report

26

Appendix D

Software Architecture Document

Software Component Requirement

non-native speakers.

2.1.1.4 (4) The GUI shall have the ability to

make adaptations due to regional

differences in line with the platform

and infrastructure s...

2.1.1.5 Error/action messages for wrong

entries

Application 2.1.2.7 (1) Batch data processing features:

Batch mode requirements

2.1.2.7 (2) Batch data processing features:

Macro/scripting

2.1.2.7 (3) Batch data processing features:

Storage and management of coded

procedures

2.1.2.7 (4) Batch data processing features:

Traceability of outputs

2.1.2.8 (1) The DMI shall ensure seamless

communication/integration between

modules/models of the DSS.

2.1.2.8 (2) The DMI shall be the integration

base for module-module and mod-

ule-database communication and

interaction for all tools, mode...

2.1.2.8 (3) In addition, the data management

interface (DMI) shall support plug-

ins of modules that meet the re-

quirements of the communic...

2.1.7.6 Support for user defined process

representation/algorithms

2.2.1.3 Modular implementation

2.2.1.3 (2) Layered architectures, modular de-

sign, well defined interfaces, object-

orientation and component-based

development

2.2.1.7 Highly cohesive and loosely cou-

pled design

Timeseries Manager 2.1.3(1) IMS: Pre- and Post-Processors and

Data Analysis Tools - visualization

tools

2.1.3(2) IMS: Pre- and Post-Processors and

Data Analysis Tools - charting func-

tionality

2.1.3(3) IMS: Pre- and Post-Processors and

Data Analysis Tools - multiple se-

lections

2.1.3(4) IMS: Pre- and Post-Processors and

Data Analysis Tools - customization

Nile Basin DSS

Inception Report

27

Appendix D

Software Architecture Document

Software Component Requirement

of predefined

2.1.3(5) IMS: Pre- and Post-Processors and

Data Analysis Tools - Charts in IMS

2.1.3(6) IMS: Pre- and Post-Processors and

Data Analysis Tools - export inter-

face

GIS Manager 2.1.4.1 IMS: Pre- and Post-Processors and

Data Analysis Tools - export inter-

face

2.1.4.2 OGC compatibility and compliance

2.1.4.2 (1) OGC compatibility and compliance:

Import / Export of spatial information

2.1.4.2 (2) OGC compatibility and compliance:

Projections

2.1.4.3 Support of spatial data pre-

processing for model inputs

2.1.4.3 (1) Support of spatial data pre-

processing for model inputs: Proc-

ess geo-referenced vector and

raster data

2.1.4.3 (2) Support of spatial data pre-

processing for model inputs: Pan,

zoom and select

Table Manager

Hydro Object Manager 2.1.5.2 Basic set of pre-defined node types

2.1.5.2 (1) start or input nodes

2.1.5.2 (2) Demand nodes

2.1.5.2 (3) Structural components

2.1.5.2 (4) Control nodes

2.1.5.2 (5) Geometry nodes

2.1.5.2 (6) Aquifers

2.1.5.2 (7) End nodes

Scenario Manager 2.1.5.10 Model nesting, hierarchical linkage

of networks

2.1.6.1 Model scenario management

2.1.6.3 Direct scenario comparison

2.1.6.4 Simulation based optimization

2.1.6.5 Sensitivity analysis

2.1.6.6 Stochastic modelling (error distribu-

tion)

2.1.6.6 (3) The stochastically generated se-

quences shall be used for determi-

nistic applications

Nile Basin DSS

Inception Report

28

Appendix D

Software Architecture Document

Software Component Requirement

Analysis Manager 2.1.5.12 Tools for converting model outputs

into desired criteria using user-

defined methods

2.1.5.19 Yield/reliability analysis for reser-

voirs and catchments

2.1.8 Multi-Criteria-Analysis (MCA) Tools

2.1.8.3 Automatic model linkage

Report Manager 2.1.2.4 User defined report generation

2.1.2.4 (1) Report configuration

2.1.2.4 (2) IMS shall enable the user to cus-

tomize predefined report templates

2.1.2.4 (3) All reports shall be stored and man-

aged in the IMS.

2.1.2.4 (4) Export of all reports to standard ap-

plications such as office software

packages/formats shall be possible.

Script Manager 2.1.7.6(1) Support for user defined process

representation/algorithms

2.1.7.6(2) Support for user defined process

representation/algorithms

2.1.7.6(3) Support for user defined process

representation/algorithms

2.1.7.6(4) Support for user defined process

representation/algorithms

2.1.7.6(5) Support for user defined process

representation/algorithms

Study Manager

Meta Data Manager 2.1.2.3 Standard META data model

2.1.2.3 (1) Standard META data model: Gen-

eral requirements

2.1.2.3 (2) Standard META data model: Main

data types

2.1.2.3 (3) Standard META data model: Au-

thorization and user access

2.1.2.3 (4) Standard META data model: Busi-

ness process

Ensemble Modeller 2.1.6.6 Stochastic modelling (error distribu-

tion)

2.1.6.6 (3) The stochastically generated se-

quences shall be used for determi-

nistic applications

Model Linker 2.1.5.10 Model nesting, hierarchical linkage

of networks

Optimizer 2.1.6.4 Model nesting, hierarchical linkage

Nile Basin DSS

Inception Report

29

Appendix D

Software Architecture Document

Software Component Requirement

of networks

MCA 2.1.5.12 Tools for converting model outputs

into desired criteria using user-

defined methods

2.1.8.1 Multiple MCA methods

2.1.8.2 User defined open list of criteria

2.1.8.3 Automatic model linkage

CBA 2.1.5.11 Economic analysis of scenarios

(CBA)

Database 2.1.2.1 Standard RDMS with database level

application clustering feature

2.1.2.1 (1) The DBMS shall store all relevant

basin data as well as all data to

manage and run the NB DSS

2.1.2.1 (2) The DBMS shall support data defini-

tion and manipulation according to

state of the art standards for data

base managements sys...

2.1.2.1 (3) Database corruption and losses

2.1.2.1 (4) DBMS data type requirements

2.1.2.1 (5) DBMS geo-referenced spatial in-

formation requirements

2.1.2.1 (6) DBMS shall efficiently operate on

voluminous time series data

2.1.2.1 (7) IMS access to DBMS - interfaces to

different programming languages

and other third-party applications.

2.1.2.1 (8) DBMS synchronization require-

ments

2.2 Non-functional requirements

2.2.1.9 Embedded backup tools and

backup strategy

Model Tools 2.1.5 Dynamic Water Budget and Alloca-

tion Model

2.1.5 (1) Dynamic Water Budget and Alloca-

tion Model - multiple years

2.1.5 (2) Dynamic Water Budget and Alloca-

tion Model - surface+groundwater

2.1.5 (3.1) Dynamic Water Budget and Alloca-

tion Model - water allocation per

user

2.1.5 (3.2) Dynamic Water Budget and Alloca-

tion Model - source priority per user

2.1.5 (3.3) Dynamic Water Budget and Alloca-

tion Model - operation rules

Nile Basin DSS

Inception Report

30

Appendix D

Software Architecture Document

Software Component Requirement

2.1.5 (3.4) Dynamic Water Budget and Alloca-

tion Model - groundwater manage-

ment rules

2.1.5 (3.5) Dynamic Water Budget and Alloca-

tion Model - operation rules of the

diversion structures

2.1.5 (3.6) Dynamic Water Budget and Alloca-

tion Model - water allocation based

on targets

2.1.5 (3.7) Dynamic Water Budget and Alloca-

tion Model - proportional water allo-

cation

2.1.5 (3.8) Dynamic Water Budget and Alloca-

tion Model - re-use of drainage wa-

ter

2.1.5 (4) Dynamic Water Budget and Alloca-

tion Model - explicit transfer scheme

2.1.5.1 Data driven, user specified, interac-

tive network configuration

2.1.5.13 Lateral inflow, lateral catchments,

floodplain representation

2.1.5.14 Hydropower production

2.1.5.15 Hydraulic model (1D)

2.1.5.16 Sediment transport in river networks

and reservoir siltation

2.1.5.17 Multiple routing methods (data de-

pendent) (optional)

2.1.5.18 Open (user defined) list of node

types

2.1.5.2 Basic set of pre-defined node types

2.1.5.2 (1) start or input nodes

2.1.5.2 (2) Demand nodes

2.1.5.2 (3) Structural components

2.1.5.2 (4) Control nodes

2.1.5.2 (5) Geometry nodes

2.1.5.2 (6) Aquifers

2.1.5.2 (7) End nodes

2.1.5.3 Geo-referenced network geometry

2.1.5.4 Explicit routing of flow

2.1.5.5 Explicit routing of flow

2.1.5.6 Explicit mass budget, error statistics

2.1.5.7 Explicit groundwater representation

and coupling

Nile Basin DSS

Inception Report

31

Appendix D

Software Architecture Document

Software Component Requirement

2.1.5.8 Multiple reservoirs, including hydro-

power generation

2.1.5.9 Variable reach geometry

2.1.6.2 Embedded calibration methods with

error statistics

2.1.6.2 (1) The system shall provide embedded

calibration tools

2.1.6.2 (2) The calibration tools shall support

calibration of any part of the basin

under consideration

2.1.6.2 (3) The system shall provide appropri-

ate objective functions

2.1.6.2 (4) The calibration tools shall enable

the users to determine model pa-

rameter sets

2.1.7.1 Rainfall-runoff models (lumped,

semi-distributed)

2.1.7.2 Irrigation water demand estimation,

crop production model

2.1.7.3 Water quality model (DO/BOD, con-

servative, first order decay

2.1.7.4 Catchment erosion process model-

ling

2.1.7.5 Multiple evapotranspiration estima-

tion methods

2.1.7.6 Support for user defined process

representation/algorithms

2.1.7.7 Support for user defined process

representation/algorithms

2.1.7.8 Rainfall-runoff model: fully distrib-

uted (optional)

Model Tool adapter 2.2.1.3 Modular implementation

2.2.1.3 (2) Layered architectures, modular de-

sign, well defined interfaces, object-

orientation and component-based

development

DSS Proxy

DSS Tools 2.1.4.3 (3) Support of spatial data pre-

processing for model inputs:

Catchment delineation

2.1.4.4 Spatial analysis, interpolation (GIS

links)

2.1.4.4 (1a) Spatial analysis, interpolation (GIS

links): Geo-processing: Intersection

2.1.4.4 (1b) Spatial analysis, interpolation (GIS

Nile Basin DSS

Inception Report

32

Appendix D

Software Architecture Document

Software Component Requirement

links): Geo-processing: Union

2.1.4.4 (1c) Spatial analysis, interpolation (GIS

links): Geo-processing: Proximity

analysis

2.1.4.4 (2a) Spatial analysis, interpolation (GIS

links): Spatial interpolation: Nearest

neighbour

2.1.4.4 (2b) Spatial analysis, interpolation (GIS

links): Spatial interpolation: Inverse

distance

2.1.4.4 (2c) Spatial analysis, interpolation (GIS

links): Spatial interpolation: Moving

polynomials

2.1.4.4 (2d) Spatial analysis, interpolation (GIS

links): Spatial interpolation: Kriging

2.1.3.1 Embedded statistical tools

2.1.3.1 (1a) Embedded Statistical Tools: De-

scriptive statistics: Minimum

2.1.3.1 (1b) Embedded Statistical Tools: De-

scriptive statistics: Maximum

2.1.3.1 (1c) Embedded Statistical Tools: De-

scriptive statistics: Mean

2.1.3.1 (1d) Embedded Statistical Tools: De-

scriptive statistics: Median

2.1.3.1 (1e) Embedded Statistical Tools: De-

scriptive statistics: Mode

2.1.3.1 (1f) Embedded Statistical Tools: De-

scriptive statistics: Standard devia-

tion

2.1.3.1 (1g) Embedded Statistical Tools: De-

scriptive statistics: Skewness

2.1.3.1 (1h) Embedded Statistical Tools: De-

scriptive statistics: kurtosis

2.1.3.1 (1i) Embedded Statistical Tools: De-

scriptive statistics: Empirical fre-

quency

2.1.3.1 (1j) Embedded Statistical Tools: De-

scriptive statistics: Cumulative fre-

quency distributions

2.1.3.1 (2) Embedded statistical tools: Statisti-

cal tests

2.1.3.1 (2a) Embedded statistical tools: Statisti-

cal tests: Stationarity

2.1.3.1 (2b) Embedded statistical tools: Statisti-

cal tests: Homogeneity

2.1.3.1 (2c) Embedded statistical tools: Statisti-

Nile Basin DSS

Inception Report

33

Appendix D

Software Architecture Document

Software Component Requirement

cal tests: Randomness

2.1.3.1 (3) Embedded statistical tools: Double

mass analysis

2.1.3.1 (4) Embedded statistical tools: Fre-

quency distributions

2.1.3.1 (4a) Embedded statistical tools: Fre-

quency distributions: Common dis-

tributions

2.1.3.1 (4b) Embedded statistical tools: Fre-

quency distributions: Parameter

estimation

2.1.3.2 Time series analysis tools

2.1.3.2 (1) Time series analysis tools: Auto and

cross correlation analysis

2.1.3.2 (2) Time series analysis tools: Duration

curves

2.1.3.2 (3) Time series analysis tools: Regres-

sion analysis

2.1.3.2 (4) Time series analysis tools: Genera-

tion of long time-series.

2.1.3.2 (5) Time series analysis tools: Projec-

tion of future demands.

2.1.3.3 Data treatment and quality assur-

ance tools

2.1.3.3 (1) Data Treatment and Quality Assur-

ance Tools: Data Validation Tools

2.1.3.3 (1a) Data Treatment and Quality Assur-

ance Tools: Data Validation Tools:

Physical or numerical limits

2.1.3.3 (1b) Data Treatment and Quality Assur-

ance Tools: Data Validation Tools:

rate of rise and fall

2.1.3.3 (1c) Data Treatment and Quality Assur-

ance Tools: Data Validation Tools:

Comparison against observed be-

havior

2.1.3.3 (1d) Data Treatment and Quality Assur-

ance Tools: Data Validation Tools:

Comparison against related vari-

ables

2.1.3.3 (1e) Data Treatment and Quality Assur-

ance Tools: Data Validation Tools:

Comparison between adjacent sta-

tions

2.1.3.3 (1f) Data Treatment and Quality Assur-

ance Tools: Data Validation Tools:

General comparison between dif-

Nile Basin DSS

Inception Report

34

Appendix D

Software Architecture Document

Software Component Requirement

ferent variables

2.1.3.3 (2) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods

2.1.3.3 (2a) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Maps

2.1.3.3 (2b) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Tables

2.1.3.3 (2b.1) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Tables: All station infor-

mation

2.1.3.3 (2b.2) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Tables: Time interval

2.1.3.3 (2b.3) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Tables: Display statistics

2.1.3.3 (2c) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Test on extremes

2.1.3.3 (2c.1) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Test on extremes: up-

per/lower limits

2.1.3.3 (2c.2) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Test on extremes: limits in

rise and fall

2.1.3.3 (2c.3) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Test on extremes: User

defined rules

2.1.3.3 (2d) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Inspection of temporal

variation

2.1.3.3 (2d.1) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Inspection of temporal

variation: TS Plot

2.1.3.3 (2d.2) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Inspection of temporal

variation: lag/shift

2.1.3.3 (2d.3) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Nile Basin DSS

Inception Report

35

Appendix D

Software Architecture Document

Software Component Requirement

Methods: Inspection of temporal

variation: Residuals and movi...

2.1.3.3 (2e) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Inspection of longitudi-

nal/spatial variation

2.1.3.3 (2e.1) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Inspection of longitudi-

nal/spatial variation: Displa...

2.1.3.3 (2e.2) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Inspection of longitudi-

nal/spatial variation: Map pr...

2.1.3.3 (2e.3) Data Treatment and Quality Assur-

ance Tools: Graphical Screening

Methods: Inspection of longitudi-

nal/spatial variation: Spatia...

2.1.3.4 (1) dvanced statistical methods: Multi-

variate analysis and regression (op-

tional)

2.1.6.6 (1) The system shall be able to gener-

ate climate data as well as stream

flow data

2.1.6.6 (2) The system shall support the sto-

chastic generation of data for single

site and multi site

Map Component 2.1.4.3 (1) Support of spatial data pre-

processing for model inputs: Proc-

ess geo-referenced vector and

raster data

2.1.4.3 (2) Support of spatial data pre-

processing for model inputs: Pan,

zoom and select

System Administration 2.1.2 (4) For systematic tracing of results the

IMS shall support logging of all

processes in the DSS and interac-

tions of the user with the DSS

2.1.2.5 Support access to system perform-

ance statistics

2.2.4.* General Administrative

Nile Basin DSS

Inception Report

36

Appendix D

Software Architecture Document

Note from Table 4.4 that

 Three software components have no associated requirements. These are the Ta-

ble Manager, Study Manager and DSS Proxy – all software components that

comes out of the use cases and not the requirements in /1/. Requirements for

these should be established during the detailed analysis and design stages.

 Five software components – Model linker, Optimiser, Ensemble modeller,

Model tool adapter and CBS - are backed by just 1 or 2 requirements. These are

all potential complicated components that need further analysis before being de-

tailed further. Requirements for these should also be further elaborated during

the detailed analysis and design stages

 Otherwise requirements are well distributed over the software components.

Nile Basin DSS

Inception Report

37

Appendix D

Software Architecture Document

5 VIEWPOINT: LOGICAL VIEW

This chapter describes the overall architecture in terms of software components and

their interactions.

5.1 Components

The software components are derived from the functional components established in

SRS /2 / and the use cases /4/. This has been explained in the chapter 4. In the following

the term component is used for software components.

Components are considered autonomous, encapsulated units that provide one or more

interfaces. Components can be reused – and even replaced – within the NB DSS.

Figure 5.1 shows a diagram of all the identified components. The rest of this Chapter

will dig into the details with these components and their interactions.

Figure 5.1 NB DSS Components

Nile Basin DSS

Inception Report

38

Appendix D

Software Architecture Document

5.1.1 The Helicopter View
Seen from the helicopter view, the NB DSS can be considered as a system built of three

components as shown in Figure 5.2.

NB DSS

DSS Front-end

DatabaseModel Tools

Figure 5.2 NB DSS - helicopter view of components (UML)

The DSS Front-end component is a Windows application providing the DSS-specific

functionality. The DSS Front-end is built from “scratch” during the NBI project.

The Database component is a RDBMS prepared for handling all types of DSS data –

such as GIS (spatial) data, time series data, metadata, hydro objects and scenario data.

The Model Tools component is a collection of generalized mathematical models such as

the DHI proprietary models MIKE 11 and MIKE BASIN – but can also be public do-

main models or other proprietary models. The Model Tools are “off-the-shelf” software

products and as such not directly part of the DSS Front-end.

In the following, each of these three main components will be described in more details.

5.1.2 The DSS Front-end
In this section the components of the DSS Front-end will be described. The DSS Front-

end is the “starting-point” for most interactions with the NB DSS. It has two overall

components: a Shell component and an Application component as shown in Figure 5.3.

The purpose of the Shell component is to host and display User Interface (UI) elements.

The Application component provides the business functionality. For details on these

two components, see sections 5.1.2.1 and 5.1.2.2.

ApplicationShell

IApplication
IShell

Figure 5.3 Shell and Application components (UML)

The DSS Front-end has a modular architecture supporting the idea of “separation of

concerns”. A number of Modules each takes care of a specific part of functionality

within the DSS Front-end. An example of a module is the Time Series Manager, taking

care of all functionality regarding time series. Each module is implementing business

functionality, data access and a data model.

Nile Basin DSS

Inception Report

39

Appendix D

Software Architecture Document

5.1.2.1 The Application Component

The Application component provides the business functionality of the DSS Front-end

by hosting all available Modules and Tools as shown in Figure 5.4.

Module 1..n

Application

IModules

IModuleName

Tool 1..n

IModule ITool

ITools

Figure 5.4 Application, Modules and Tools components (UML)

Each module implements the IModule interface. During start-up of the DSS Front-end

(the Shell component), the Application component scans the installation folder for

available modules (assemblies implementing IModule), instantiates the modules and

adds them to the list of modules (IModules – see Figure 5.5).

:ModuleApplication

New()

Add to collection of modules (Imodules)

Shell

loop [For each module type]

New()

Get all module types

Figure 5.5 Discovering and enabling Modules (UML)

For more details on the modules, see Section 5.1.2.3.

Another group of components hosted by the Application component are the Tool com-

ponents. Tool components are normally lightweight components with much more lim-

ited and specific functionality than the modules. An example of a tool is the Standard

Deviation Tool, calculating the standard deviation of a time series.

All tools implement the ITool interface, and as the modules, they also have the ability to

register themselves during installation. During start-up of the DSS Front-end, the Appli-

cation component scans a configuration for available Tools and adds them to the list of

available tools (ITools) – similar to the sequence for modules shown in Figure 5.5.

Nile Basin DSS

Inception Report

40

Appendix D

Software Architecture Document

For more details on tool components, see Section 5.1.2.4.

All mentioned interfaces are briefly described in Table 5.1.

Table 5.1 Application component interfaces

Interface Description

IApplication Interface providing access to the Application members. Examples of

properties in the IApplication interface are:

 Modules (implementation of IModules)

 Tools (implementation of ITools) etc.

IModules A collection of all modules registered on the machine. Examples of

methods in the IModules interface are:

 Add()

 Remove()

 Contains() etc.

ITools A collection of all tools registered on the machine. Examples of meth-

ods in the ITools interface are:

 Add()

 Remove()

 Contains()

 GetToolsOfType() etc.

IModule The interface each module must implement to plug into the Application

component. Examples of properties in the IModule interface are:

 Name

 Description

 Enabled etc.

IModuleName

(e.g., ITimeseries-

Manager)

Interface providing the business functionality of the module, Module-

Name. For examples of methods in these interfaces, see section

5.1.2.3.

ITool The interface each tool must implement. The interface provides infor-

mation about on which object types the tool can execute and contains

methods for defining input, executing the tool and delivering output.

Examples of methods in the ITool interface are:

 SupportsType()

 Execute() etc.

5.1.2.2 The Shell Component

The Shell component is hosting and displaying the UI components. Three basic types of

UI components exist:

 Explorer windows

 Data view windows

 Map windows

Nile Basin DSS

Inception Report

41

Appendix D

Software Architecture Document

The explorer windows serve as the entrance point for exploring, searching and filtering

the relevant data for a particular module. The data view windows are used to visualise

and edit data and normally include UI controls such as charts or tables. Map windows

are used to display GIS data.

Each UI component implements one of the three corresponding interfaces IExplorer-

Window, IDataViewWindow or IMapWindow
1
 as shown in Figure 5.6.

Shell

ExplorerWindow 1..n

IExplorerWindow

IExplorerWindows

IDataViewWindows

IMapWindows

MapWindow 1..n

DataViewWindow 1..n

IShell

IDataViewWindow

IMapWindow

Figure 5.6 Shell and UI components (UML)

All explorer windows implement the IExplorerWindow interface... During start-up the

Shell component scans the installation folder for available explorer windows, instanti-

ates them, adds them to the list of explorer windows (IExplorerWindows) and finally

displays them (see Figure 5.7).

1
 IMapWindow is actually a descendant of IDataViewWindow. In other words, a map window is a special type of data

view window.

Nile Basin DSS

Inception Report

42

Appendix D

Software Architecture Document

Shell

loop [For each explorer type]

Add to collection of explorers (IExplorerWindows)

Display explorer

:Explorer

New()

Get all explorer types

Figure 5.7 Discovering and enabling explorer windows (UML)

All data view windows implement the IDataViewWindow interface.

The map windows are special data view windows that in addition to the IDataView-

Window interface implement a IMapWindow interface. This enables replacing an exist-

ing implementation of a Map window (ex. ThinkGeo) with another one.

Table 5.2 briefly describes the mentioned interfaces.

Table 5.2 Shell component interfaces

Interface Description

IShell Interface provided by the shell component.. Examples of properties in

the IShell interface are:

 State

 ProgressbarVisible

 ExplorerWindows (implementeation of IExplorerWindows)

 DataViewWindows (implementation of IDataViewWindows)

 MapWindows (implementation of IMapWindows) etc.

IExplorerWindows A collection of explorer windows currently available in the Shell. Exam-

ples of methods in the IExplorerWindows are:

 Add()

 Remove()

 Hide()

 Show()

 Select()

 Contains() etc.

Nile Basin DSS

Inception Report

43

Appendix D

Software Architecture Document

Interface Description

IDataViewWindows A collection of data view windows currently available in the Shell. This

interface has similar methods as IExplorerWindows.

IMapWindows An array of map windows (DataView windows implementing the IMap-

Window interface) currently available in the Shell.

IExplorerWindow The interface that all explorer windows has to implement to plug into the

Shell component. Examples of properties in the IExplorerWindow inter-

face are:

 Control

 Caption

 Name

 Enabled etc.

IDataViewWindow The interface that all data view windows implement. This interface has

similar properties as the IExplorerWindow interface

IMapWindow Derives from IDataViewWindow. Map windows are used for visualization

of GIS (spatial) data. Examples of methods in the interface are:

 AddLayer()

 RemoveLayer()

 HideLayer()

 ShowLayer()

 MoveLayerUp()

 MoveLayerDown() etc.

For more details on the Shell UI, see Section 6.2.

5.1.2.3 The Modules

Modules are a specialised type of components as they provide specific subset of the full

functionality of the NB DSS system. The available modules are automatically detected

during start-up of the DSS-Front-end as described in Figure 5.5. Typically, a module

implements all functionality regarding a well-defined category of data. For example the

Timeseries Manager module handles all functionality regarding time series data, and the

Scenario Manager handles all functionality regarding scenario data. The business logic

of a module is exposed via public interfaces. If and when a module needs functionality

provided by another module, access to this functionality is achieved through that mod-

ules public interface.

Each of the individual modules is using a 2-layered architecture with distinct layers for

business logic and data access as shown conceptually in Figure 5.8. A layered architec-

ture has a number of benefits, e.g. the application becomes easier to test, adding new

functionality becomes easier and other applications will be able to reuse functionality

exposed by the layers. The latter is important for a proper scripting interface.

Nile Basin DSS

Inception Report

44

Appendix D

Software Architecture Document

Figure 5.8 Module architecture

Note in Figure 5.8

 Each module is responsible for a part of the full data model. E.g. the Timeseries

Manager handles the time series part of the full data model. If other modules

need access to time series data they will interact with the Timeseries Manager

 The data model provides full database managed relationships, i.e. an entity be-

longing to one part of the data model can be used as a foreign key in another

part. I.e. the separation shown at the Database layer in Figure 5.8 is conceptual.

This is a strictly layered architecture, meaning that each layer interacts with only the

layers directly below and above itself. Below is a short description of the responsibili-

ties of the three layers:

Business Layer

The business layer implements the IModule interface. Furthermore, it provides the busi-

ness functionality of the module itself through the IModuleName interface (ex. ITime-

Series). For details see Section 5.1.2.1.

Data Layer

The data layer is responsible for creating, reading, updating and deleting data for a par-

ticular module. For details see Section 5.1.4.5.

Table 5.3 lists the identified modules.

Table 5.3 Modules

Module Description

 Modules

Database

Timeseries

Manager

Business layer

Data layer

Timeseries

Data

Scenario

Manager

Business layer

Data layer

Scenario

Data

...

Business layer

Data layer

…

 Data

Nile Basin DSS

Inception Report

45

Appendix D

Software Architecture Document

Module Description

Timeseries Manager The Timeseries Manager holds all the logic for handling

time seriesTimeseries Manager. The module also serves

other modules and components with time series via the time

series business layer of logic.

It’s public interface (ITimeseriesManager) includes methods

like:

 GetTimeseries()

 GetAllTimeseriesAttributes()

 GetAssociatedFeatures()

 RemoveTimeseries()

 UpdateTimeseries() etc.

GIS Manager The GIS Manager holds all the logic for handling GIS data.

The module also serves other modules and components

with spatial data via the business logic layer of the module.

It’s public interface (IGisManager) includes methods like:

 GetFeatureLayerNames()

 GetFeatureLayer()

 Update()

 Merge()

 RefreshDssFeatureLayer() etc.

Scenario Manager The Scenario Manager deals with all aspects of modelling in

the NB DSS in relation to the models integrated via model

adapters: setup, registration in the NB DSS, definition of

scenarios in the NB DSS, execution scenarios and post-

processing of modelling results, including scenario compari-

son.

The Scenario Manager utilizes other components like the

Ensemble Modeller, the Optimizer, and the Model Linker to

provide functionality for advanced model execution.

It’s public interface (IScenarioManager) includes methods

like:

 Create()

 Update()

 Delete()

 GetNewModelSetup()

 GetInitialConditionforModel()

 GetInputTimeSeriesforModel()

 GetOutputTimeSeriesofModel()

 GetOutputDataofModel() etc.

Nile Basin DSS

Inception Report

46

Appendix D

Software Architecture Document

Module Description

Analysis Manager The Analysis Manager provides functionality for doing ad-

vanced analysis of data. It uses separate components like

MCA and CBA to provide specialized functionality while

providing common functionality like handling indicators.

Access to time series, simulations, tables etc. makes use of

the respective other modules in charge of these types of

data.

Members of the public interface could include:

 GetAllAnalyses()

 GetAnalysisById()

 RemoveAnalysis()

 GetAnalysisTool() etc.

Table Manager The Table Manager module provides functionality to define,

store and access tabular information, e.g. rating curves and

lists.

Members of the public interface could include:

 GetAllTables()

 GetTableById()

 GetTableCell() etc.

Hydro Object Manager The Hydro Object Manager provides functionality to define,

store and retrieve Hydro Objects as well as functionality to

be associated with Hydro Objects displayed on a map.

Other components (e.g., the Scenario Manager) utilize Hy-

dro Objects.

Members of the public interface could include:

 GetAllHydroObjects()

 GetHydroObjectTypes()

 GetHydroObjectFromModel() etc.

Report Manager The Report Manager provides functionality for creation, stor-

ing, display and printing of reports.

System Administration The System Administration Module provides functionality to

administer users and groups, defines studies, export/import

data, and perform other system administration relevant

tasks.

Members of the public interface could include:

 AddUser()

 RemoveUser()

 AssignUserToStudy() etc.

Scripting Manager Scripting functionality – and the ability to store, to retrieve

and to run script within the NB DSS is provided by the

Scripting Manager.

Nile Basin DSS

Inception Report

47

Appendix D

Software Architecture Document

Module Description

Metadata Manager The Meta Data Manager provides all modules and compo-

nents with facilities to create, store and find meta data in-

formation on entities. The UI of the module includes a data

explorer for meta data.

Members of the public interface could include:

 GetMetadataForEntity()

 GetMetadataForParentEntity()

 GetMetadataForChildEntity()

 AddMetaData() etc.

Scenario Manager

Ensemble

Modeller

Model Linker

Optimizer

Analysis Manager

MCA

CBA

Figure 5.9 Sub-components (UML)

The Scenario Manager module and Analysis Manager modules are separated into more

than one component, as seen in Figure 5.9. These sub-components are listed in Table

5.4.

Table 5.4 Module sub-components

Module sub-

component

Description

Ensemble Modeller The Ensemble Modeller component encapsulates the func-

tionality required by the Scenario Manager to define and

execute ensemble scenarios. This includes handling of en-

semble time series for input and output as well as post-

processing of outputs (e.g. aggregation, statistics). For a

detailed description, see Section 5.2.1.

Optimizer The Optimizer component provides configuration and exe-

cution functionality for the Scenario Manager to handle

simulation based optimization scenarios. For a detailed de-

scription, see Section 5.2.3.

Model Linker The Model Linker component assists the Scenario Manager

in defining scenarios on multiple models as well as execut-

ing these linked models. For a detailed description, see

Section 5.2.2.

MCA The MCA component provides the UI, business and data

access functionality with respect to multi-criteria analysis.

The MCA component is a sub-component of the Analysis

Manager.

Nile Basin DSS

Inception Report

48

Appendix D

Software Architecture Document

Module sub-

component

Description

CBA The CBA is similar the MCA only encapsulating the Cost

Benefit Analysis. The CBA component is a sub-component

of the Analysis Manager.

5.1.2.4 The UI Components

The shell component is hosting and displaying UI components – as explained in Section

5.1.2.2 and Section 6.2.

The UI components are organized according to the modules they mainly serve – e.g.

Explorers and Data Views for the Timeseries Manager, Explorers and Data Views for

the GIS Manager and so on. They, however, also collaborate on the module level in or-

der to provide coherent end-to-end functionality for the users. E.g. the Timeseries Ex-

plorer makes use of both the Timeseries Manager module and the GIS Manager module

for associating time series with GIS features. Similarly, the Scenario Manager will -

when creating a new scenario - use business functionality from both the Scenario Man-

ager module and the Timeseries Manager module when providing the user a list of rele-

vant input time series to choose from.

The use of modules from the UI layer is depicted in Figure 5.10.

Figure 5.10 UI components and modules (UML)

Note from Figure 5.10.

UI Layer

Timeseries

Module

Time series

UI

Business layer

Data layer

Scenario

Module

Scenario

UI

Business layer

Data layer

…

Module

…

UI

Business layer

Data layer

To avoid clutter not all

possible dependencies have

been depicted

Logical concept

of a functionality

domain

Nile Basin DSS

Inception Report

49

Appendix D

Software Architecture Document

 The combination of a specific module and its primary related UI components –

explorers and data views - is called a functionality domain (hereafter just do-

main). E.g. the Time series domain constitutes the Timeseries Manager module

and the corresponding Timeseries UI components.

 All UI components can make use of all modules.

 UI components can interact across manager boundaries.

There is a slight difference between interactions within the boundary of a manager and

interactions that occur between managers. The former happens through direct compo-

nent references while the latter happens through a factory mechanism. This is depicted

in Figure 5.11

Figure 5.11 Cross-manager component referencing (simplified) (UML)

Note from the figure:

 A UI component can directly interact with the module within its own domain,

but when interacting with a module in another domain, it will use the singleton

Application component as factory. This provides for a loosely coupled system.

 UI components from different domains can also make use of each other through

a factory mechanism. E.g. a Timeseries UI component will – when interacting

with a GIS UI component – use the Shell as a factory for getting a reference to

the object implementing a specified interface. This provides for making a

loosely coupled system coherent.

 All object definitions occur through interfaces defined at a generic level where

by all domains know the interface for all business objects (the module APIs).

The loose coupling allows for different UI components as well as scripting using

the business object at module level.

UI A Module A UI B Module B

Interact

Application Shell

Get(IModuleB)

Interact

Get(UIB)

Interact

Simple

interaction

Cross use of

business

functionality

Cross use of

UI components

Nile Basin DSS

Inception Report

50

Appendix D

Software Architecture Document

 •All module interfaces are defined at a generic level, and are thus available

across domains. The loose coupling allows for different UI components, as well

as scripting, to access modules in all domains.

5.1.2.5 The Tool Components

Tools target specific functionality areas, such as time series tools or GIS tools. From a

software architecture perspective, Tool components are “cross cutting” components that

are not associated with a particular module, but can be used by any module. Further-

more, tool components are normally lightweight, with much more limited and specific

functionality than the modules.

All tools require some specific input data, have an execute method and deliver some

output. For example the time series Resample tool expects a time series as input and de-

livers a re-sampled time series as output. Each tool implements the ITool interface, and

similar to the modules, has the ability to register itself during installation.

The toolbox uses the .NET reflection mechanism to establish a knowledge of the types

of data that the individual tools consumes and produces. This makes it possible to build

sequences of tool executions where output from one tool is automatically made avail-

able as input for the next tool in the sequence. The toolbox will include specialized tools

for displaying and persisting output.

This architecture provides a mechanism for developing custom tools catering to specific

needs within an organisation or a project, while being seamlessly integrated with the

NB DSS.

5.1.3 The Model Tools
In this section the Model Tool components and the interaction with the Front-end com-

ponent will be described. The Model Tools are a collection of “off-the-shelf” software

products integrated in the DSS Front-end using the Adapter pattern.

Most modelling tools - and certainly the DHI MIKE model tools - have a UI component

and an engine component. The engine controls the model execution – i.e. solves the

mathematical equations and processes. The UI is used to configure the model – that is

creating the model setup.

Model Tools

Model Tool 1..n

UI

Model Tool 1..n

Engine

Figure 5.12 The Model Tools (UML)

Nile Basin DSS

Inception Report

51

Appendix D

Software Architecture Document

The following section describes the use of model adapters. The description is generic

and not biased towards the MIKE modelling tools.

5.1.3.1 The Model Adapters

Interaction between the DSS Front-end and the Model Tools is performed using the

Adapters design pattern. Each Model Tool component includes a specific model adapter

component that implements two interfaces: IConfigAdapter controlling the model setup

registration and IRuntimeAdapter controlling the preparation and execution of a model

simulation (see Figure 5.13).

Scenario Manager

Model Adapter

Model Tool

IScenarioManager

IConfigAdapter IRuntimeAdapter

Figure 5.13 The model adapters (UML)

Adapters for the relevant DHI MIKE models will be developed as part of the NB DSS

project, but the proposed architecture also enables integration with other model tools.

5.1.3.2 Model Setup Registration (IConfigAdapter)

Model setup registration in the NB DSS is performed using the IConfigAdapter inter-

face of the model adapter as shown in Figure 5.14.

Nile Basin DSS

Inception Report

52

Appendix D

Software Architecture Document

Model Tool
Scenario

Manager

ConfigAdapter

<Model Tool>
Database

Register Model Setup

New()

GetConfiguration(modelSetup)

Get properties

Make BLOB

Get hydro objects

DSS Model Setup

Save properties

Save hydro objects

Save BLOB

The adapter

depends on the

model tool in

action

Figure 5.14 Register Model Setup (UML)

Nile Basin DSS

Inception Report

53

Appendix D

Software Architecture Document

In this sequence,

1. The DSS Front-end component (The Scenario Manager) launches the model

adapter and calls the GetConfiguration() method.

2. The model adapter understands how to communicate with the Model Tool in or-

der to interpret the model setup and returns a data structure with the model setup

information to the Scenario Manager.

3. The Scenario Manager stores the model setup in the database.

The DSS Model Setup returned from the adapter is the data structure representing the

model setup in the NB DSS. This data structure will be defined in an interface (IModel-

Setup) and will consist of the following groups of data:

 BLOB. A binary representation of the full model setup in the database. This is

used to re-create the model setup when editing or running it with the Model

Tools.

 Properties. These are the definition in the database allowing the system to run a

Model Setup. They comprise:

o Base data such as name, Model Tool reference, description etc.

o A set of time series data or parameters required to run a simulation. This

data will be stored explicitly in the data base. For instance:

 Model input and output time-series.

 Parameters such as start and end of simulation.

 References to log-file for examining the Model Tool perform-

ance.

 Hydro Objects. Hydro objects are model setup features such as hydraulic struc-

tures, catchments and river reaches. An agreed upon set of Hydro Objects will

be available in the DSS Front-end and stored explicitly in the database.

The model setup in the NB DSS is depicted as data flow in Figure 5.15 below.

Figure 5.15 Data flow when registering a model (Gane-Sarson)

DSS

Database

Scenario

Manager
ModelAdapter Model Tool

3: Configuration

2: Configuration 1: Configuration

User

Configuration as per how

the model tool organises its

setup configuration

Configuration as per the

public interfaces to the

model adapter

Nile Basin DSS

Inception Report

54

Appendix D

Software Architecture Document

Note from the figure:

 The flow from the Model Tool to the Model Adapter is based on an agreement

between the 2 components

 The flow from the Model Adapter to the Scenario Manager is based on the pub-

lic IConfigAdapter interface, which uses the DSS Model Setup data structure to

exchange model configuration information

The type of interaction between the model adapter and the model tool – i.e. how the in-

formation is exchanged between the model adapter and the model tool - depends mainly

on the capabilities of the model tool. If the model tool provides an API for getting and

setting properties of a model, then the model adapter will likely make use of such an

API. In the case where a model tool does not provide such an API, the model tool will

have to directly process the input files constituting the model, e.g. through text process-

ing.

Model adapters for MIKE models will most likely make use of the latter approach be-

cause few of them provides an API sufficiently rich for getting and setting all relevant

properties of the models.

When registering a model, the user will be presented a Model registration wizard. This

wizard will guide the user through the registration process which constitutes of selection

of model tool, selection of input file(s) constituting the model – either by browsing the

file system or communication through the model tool – and finally mapping between

input time series and GIS features.

The NB DSS allows the user to edit the topology of a model through the use of the

model tool UI. This happens through an export of the model to the file system and sub-

sequent launch of the model tool. After having edited the topology, the user can update

the model stored in the database by re-register the model. The re-registration is similar

to registration but more light-weight because the database already contains information

about the model.

5.1.3.3 Scenario Simulation (IRuntimeAdapter)

Execution of a scenario simulation in the NB DSS involves preparing a model setup for

simulation, executing the Model Tool and extracting selected simulation outputs to be

stored in the database. This is done using the IRuntimeAdapter interface of the model

adapter as illustrated in Figure 5.16.

Nile Basin DSS

Inception Report

55

Appendix D

Software Architecture Document

Model Tool
Scenario

Manager

ModelAdapter

<Model Tool>
Database

Get DSS model setup

Run Scenario

DSS model setup

Get DSS scenario

DSS scenario

New (DSS Scenario)

Preprocessing()

Establish timeseries

Set initial conditions

Set parameters

RunModel()

Execute model tool

PostProcessing()

Extract result

Save results

Results

Save simulation

The adapter

depends on the

model tool in

action

Establish model setup

Results

Figure 5.16 Run Scenario (UML)

The figure shows that

Nile Basin DSS

Inception Report

56

Appendix D

Software Architecture Document

1. The DSS Front-end (the Scenario Manager) retrieves the model setup and the

variations to the model setup (DSS scenario) from the database.

2. The Model Adapter – on behalf of the Scenario Manager - establishes the model

setup (unpacking the BLOB and establishing a directory structure for the model

tool and adapter to work within), the assumption being that the model tool is file

based and exchange of data via the adapter is done at file level. This happens by

having the Scenario Manager launching the model adapter with the selected DSS

scenario and calls the Preprocessing() method.

3. The model adapter knows how to establish the input time series, the initial con-

ditions and the input-parameters of the variations (the DSS scenario) in the

simulation folder.

4. The RunModel() method is called on the model adapter which knows how to

execute the Model Tool.

5. The PostProcessing() method is called on the model adapter which knows how

to extract the model results and to write them to the simulation folder.

6. The PostProcessing() method is called from the model adapter to instruct it to

extract the model results from the proprietary format of the model tool. The

Scenario Manager may further post-process the results as defined in the scenario

(not shown in figure)

The execution of a scenario within the NB DSS is depicted as a data flow in Figure

5.17.

Nile Basin DSS

Inception Report

57

Appendix D

Software Architecture Document

Figure 5.17 Run scenario data flow (Gane-Sarson)

Note from the figure:

 The flow from the Scenario Manager to the file system goes through the Model

Adapter, i.e. the NB DSS does not itself interact with the file system. Communi-

cation consists of unpacking a BLOB
1
, containing the model configuration and

loaded from the DSS Database, to file system folder.

 The flow from the Model Adapter to the file system follows the custom agree-

ment between the Model Adapter and the Model Tool

 The flow from the Scenario Manager to the Model Adapter uses the public

IRunAdapter interface

Table 5.5 below briefly describes the mentioned interfaces:

Table 5.5 Model Tool components interfaces

Interface Description

1
 Could be implemented as a zip-folder

User

Scenario

Manager

DSS

Database

Model

Adapter

Model Tool

File system

4: Scenario

1: Model setup

2: Model setup

3: Scenario
5: Scenario

6: Model setup

Scenario
7: Results

8: Results

9: Results

Nile Basin DSS

Inception Report

58

Appendix D

Software Architecture Document

Interface Description

IRuntimeAdapter Interface with methods for executing the Model Tool. Has methods such

as:

 PreProcessing() – for preparing the model setup by for instance

convert input time series into model tool proprietary format, pre-

pare initial conditions into model tool format, and alter model

tool setup with respectt to simulation period setting.

 RunModel() – for executing and controlling the model tool and

verifying success

 PostProcessing() – for retrieving outputs from the model tool

proprietary format to be returned to the DSS

IConfigAdapter Interface with methods for retrieving the necessary information for es-

tablishing a DSS model setup. Has public methods like:

 GetConfiguration() – parsing a model setup (by files or by using

an API if available) to retrieve all relevant configuration data to

be used by the DSS: input time series, initial conditions, poten-

tial output time series, other output data, log files

 GetModelSetup() – returns to the DSS a byte stream of data

(probably a zip-file) with all data (files) required for enabling re-

store of the model setup for later editing and execution.

 RestoreModelSetup() – will restore the model setup to the form

required to edit the content with the Model tool

IModelSetup The data structure representing a model setup in the NB DSS. It has

properties like:

 InitialCondition – adapter defined structure (bytestream) for ex-

changin initial conditions to/from the model

 ListOfTimeSeries – each time series representing a model input

time series. A time series include a full specification of the

name, type and unit and location

 ListOfHydroObjects – each Hydro Object a representation of pa-

rameters in the model setup

 ListOfOutputTimeSeries – each representing selected outputs

from a simulation

5.1.3.4 Linking of models

NB DSS supports dynamic linking – time step by time step - of models through the

adapter pattern. A dynamically linked model is a model that makes use of 2 or more

model tools that exchange data during the simulation. This in contrast to sequentially

linked models where one model tool simulation provides the input for the next model

tool simulation

OpenMI is a standard for how to enable such model tool integration – also across model

tools from different vendors. A model tool is OpenMI compliant if it just implements

one OpenMI integration interface; but one interface is typically not sufficient in order to

communicate all kinds of data among the integrated model tools. The MIKE tools do

not all have full support for OpenMI (MIKE11 and MIKE SHE are OpenMI compliant

while MIKE BASIN is not). Although two OpenMI models may be linked, it is by no

Nile Basin DSS

Inception Report

59

Appendix D

Software Architecture Document

means a trivial task. It typically requires a substantial effort and expert knowledge about

the internal part of the model tool including the numerical solution of the governing

equations.

Seen from the NB DSS point of view there is no difference between a dynamically

linked model and a “single” model. In both cases there has to exist an adapter that the

NB DSS can use in order to read and write model setups, run simulations etc.

In the case of a dynamically linked model, the model adapter needs to communicate

with more than one model tool. This can be implemented in the model adapter by ag-

gregating the model adapters for the model tools involved in the linked model. I.e. the

adapter for the linked model makes use of the adapters for the individual model tools.

5.1.3.5 Model adapter pattern

The model adapter pattern as described in the previous sections is the most common

way for a DSS system to interact with model tools. It is used in products like MIKE

FloodWatch by DHI, FEWS by Deltares and HEC-WAT by US Army Corps of Engi-

neers.

The advantages of the patterns are

 Virtually all type of model tools can be integrated with the ND DSS. As also re-

quested in requirement 2.2.1.3

 Seen from an architectural perspective there is a clear separation of concerns be-

tween the NB DSS and the modelling tools

 Model tool developments (enhancements) can be leveraged from NB DSS with-

out having to change to the NB DSS system

Potential disadvantages comprise

 The user will have to be accustomed to more than one user interface, i.e. that of

the NB DSS and those of the native modelling tools

 The user will in some cases experience a slightly more complicated work proc-

ess than if the model tool UI was directly incorporated in the NB DSS.

The NB DSS supports different types of simulations. All of these are well supported

through the adapter approach

 Optimisation – The IConfigAdapter interface of the model adapter provides

methods that the NB BSS system can use in order to obtain the list of parameters

that can be used in order to perform optimization. This is discussed in more de-

tails in Section 5.2.3

 Ensembles – The IRuntimeAdapter interface of the model adapter provides op-

tional methods that the NB DSS system can use to optimize the performance of

the whole system when running ensemble-based simulation. E.g. limiting the

system overhead by restoring models to the file system. This is discussed in

more details in Section 5.2.1

Nile Basin DSS

Inception Report

60

Appendix D

Software Architecture Document

 Linked models – Seen from the NB DSS this is merely execution of models in

sequence, i.e. the role of the adapter is no different from the standard case. Link-

ing of models is discussed further in Section 5.2.2

 Rule-based simulation (e.g. controlling the simulation from a script) – The NB

DSS scripting interface provides methods for restoring models stored in the da-

tabase to the file system and launching model simulations. I.e. the adapter ap-

proach does not negatively affect rule-based simulation.

The only alternative to the adapter approach is either limiting the model tools to those

having an API for setting up and running model or directly embedding the model tool‟s

UI in the NB DSS. The latter approach would not only be costly but also affect the fu-

ture development. Development, testing and maintenance overhead would become very

high as a significant amount of coordination is required towards model tool vendors.

With respect to the MIKE model tools as of today the only alternative to the adapter ap-

proach is UI embedding. None of the model tools provide an API rich enough for the

NB DSS to use as a substitute for the adapters.

5.1.4 The Database
The Database component is a RDBMS prepared for handling all types of DSS data –

including GIS (spatial) data, time series data and scenario/model data.

5.1.4.1 Data Categories

Each Module is responsible for handling its own well-defined category of data. For ex-

ample the Timeseries Manager component handles all time series data, and the Scenario

Manager component handles all scenario data. This means, that if the Scenario Manager

has to retrieve some time series values – for example if it wants to run a scenario simu-

lation – it cannot retrieve these data directly from the database, but has to ask the busi-

ness services of the Timeseries Manager to retrieve this data as shown in Figure 5.18.

Timeseries

Manager

Scenario

Manager
Database

Get scenario from database

Scenario

GetTimeseriesValues()

Get timeseries values from database

Timeseries values

Timeseries values

 GetScenario()

Figure 5.18 Accessing data from another module (UML)

Identified data categories are listed in Table 5.6.

Nile Basin DSS

Inception Report

61

Appendix D

Software Architecture Document

Table 5.6 Data categories

Data Category Description Handled by Module

GIS data Also called spatial data. The spatial data is a

collection of feature classes and rasters. Exam-

ples of feature classes are countries, cities, riv-

ers etc.

GIS Manager

Time series data Time series are sequences of measurements in

time. Examples of time series are discharge,

water level, rainfall etc.

Timeseries Manager

Model data All data associated with a model setup, i.e. the

basic simulation properties, the BLOB, and the

Hydro Objects.

Scenario Manager

Scenario data All the data related to the definition of scenarios,

i.e. definitions of linkages between a model

setup and the input and output data involved in

model execution.

Scenario Manager

Simulation data All the data related to an executed simulation

(references to model and scenarios, input time

series, output times series, other input and out-

put data, initial conditions)

Scenario Manager

Configuration

data

Analysis components will store configuration

data for performance indicators as well as refer-

ences to configured analysis tools, e.g. MCA

and CBA. Each tool will provide its own data

model for configuration data

Analysis Manager

MCA

CBA

Hydro Objects are considered configuration data

which are not linked to any special functional

components (although used by at least GIS and

Scenario Manager). All definitions for Hydro Ob-

jects are stored in the database.

Hydro Objects Manager

Tabular data managed by the Table Manager

may be used in several places in the other com-

ponents and modules. All data associated with a

tabular structure managed by the Table Man-

ager are stored here.

 Table Manager

Reporting data Documents and reporting configuration data Report Manager

Scripting data Scripts Scripting Manager

Meta data Variable descriptive data for different entities in

the system and time-varying history information

describing the life-line of these entities.

Metadata Manager

System data Configuration information on system installation

components (e.g. computers), users, groups,

studies and otherwise non-domain specific in-

formation.

System Administration

Nile Basin DSS

Inception Report

62

Appendix D

Software Architecture Document

5.1.4.2 Data Entities

Drilling down from the high-level data categories, the data can be described as data en-

tities in a conceptual data model. In this section the most important data entities are de-

scribed into more details.

GIS features

The GIS data is a collection of feature classes (countries, cities, rivers etc.). Each feature

is characterized by having an attribute of type geometry. In the database, the geometry

attribute will be handled by a specific PostGIS compliant geometry data type.

PostGIS uses a system table named geometry_columns to store the meta-data associ-

ated with the geometry columns in the database. PostGIS automatically creates this ta-

ble. The geometry_columns table provides housekeeping information about geometry

columns in the database, and is used by NB DSS to gather a list of geometry layers in

the database. This implies that PostGIS (like most other GIS systems) operates with a

flexible physical data model implying that new feature classes result in new physical ta-

ble in the database. This is illustrated in Figure 5.19

ID

Name

TableName

FeatureClasses

ID

Name

Geometry

Attribute1

Attribute2

...

FeatureClass1

ID

Name

Geometry

Attribute1

Attribute2

...

FeatureClass2

ID

Name

Geometry

Attribute1

Attribute2

...

FeatureClassN

Figure 5.19 Conceptual data model for GIS features (UML)

Nile Basin DSS

Inception Report

63

Appendix D

Software Architecture Document

This design is a challenge for the logical design as the classes encapsulating the data

store vary with time, or rather must be dynamic with respect to properties. I.e. it is diffi-

cult to make an object relational mapping of feature classes.

Furthermore, the ability to establish different feature classes dynamically makes it diffi-

cult to establish a common standard for how a certain type of features is described and

named, which may lead to confusion and lack of transparency on the part of the user.

An alternative design of the GIS data model could be based on a separation of geome-

tries and attributes. E.g. by creating one table per base line geometry (point, line, poly-

gon and later on raster) and then either associate set of feature attributes with the ge-

ometry or vice versa. This would imply that the DSS Front-end Data Access Layer

should create the data access object using an object creational pattern like abstract fac-

tory.

The latter design probably could enforce a stronger control on the data added to the da-

tabase - and later synchronized among installations. It might also help in reducing the

size of the database. The down-side is a more complex design and implementation

mainly because the support provided by PostGIS cannot be leveraged.

The final design on the GIS data model shall be taken during the detailed analysis and

design stage in development cycle 1.

Time series

Time series data are separated into time series descriptions in the Timeseries table and

the actual data in the TimeseriesValues table. The conceptual data model is depicted in

Figure 5.20.

ID

Name

Attribute 1

Attribute 2

..

Timeseries

DateTime

Value

TimeseriesValues

0..n

FeatureClassName

FeatureId

Feature
0..n

Name

TimeseriesGroups

0..n

Figure 5.20 Conceptual data model for Time series (UML)

Note from the figure:

 A time series can be associated with one or more features, i.e. linked to GIS en-

tities

 Time series can be grouped together, e.g. to support ensembles of time series

Nile Basin DSS

Inception Report

64

Appendix D

Software Architecture Document

Because of the potentially large amounts of data, time series data need special consid-

erations and solutions compared to other data. This implies that time series values – as

opposed to the time series properties - have to be “lazy loaded”, i.e., they are only read

from the database when they are needed for visualization or processing.

Scenarios

Scenarios represents the linkage between a model setup and the input and output data

involved in model execution. Scenarios have a reference to a model setup, and to one or

more time series and time series groups.

Figure 5.21 depicts the conceptual data model for Scenarios.

SimulationPeriod

OutputSpec

..

Id

Name

ParentId

Scenarios

..

Timeseries
0..n

BLOB

..

Models

1

Figure 5.21 Conceptual data model for Scenarios (UML)

Note from the figure:

 The ParentId attribute in the Scenarios entity allows the UI to display scenarios

– or rather their names – in a hierarchical way.

 The scenario is associated with a model, i.e. the entity holding the model setup

data

 The scenario can be associated with time series

 The lower compartment of the scenario entity contains specific scenario settings

Meta data

Meta data exists for (almost) all entities in the system. A common component exists to

handle the Meta data requirements for all other components. This will tie Meta data to

entities via a central Entity table common for all components.

Meta data in the NB DSS consists of a list of key-value pairs associated with an entity.

The key is defined in the Meta data system itself to allow for a consistent, language de-

pendent terminology across the system. The values are for (relatively) simple types,

such as text, numbers, date and time, references to other entities in the database and

enumeration (for classification purposes). The conceptual data model for the definition

part of the Meta data system is shown in Figure 5.22. Allowed values for enumerations

are either kept in a separate table or de-normalised into an info field with the key defini-

tion as shown.

Nile Basin DSS

Inception Report

65

Appendix D

Software Architecture Document

ID

Name

Type

Info

MetaDataKey

MetaDataKeyID

Language

Name

...

MetaData

Language

Figure 5.22 Conceptual data model for Meta data definition (UML)

Meta data can potentially be both static and dynamic description of data entities. Dy-

namic descriptions evolve over time. To support this, the meta data model has been split

into two parts: a static part and a dynamic part, see Figure 5.23.

ID

Name

Type

...

Entity

EntityID

MetaDataKey

MetaDataValue

...

StaticMetaData

EntityID

Datetime

MetaDataKey

MetaDataValue

User

Process

...

DynamicMetaData

Figure 5.23 Conceptual data model for Meta data (UML)

The above design is similar to the pivoting design used for managing key-value pairs

described in /5/. It is recommended to use this pattern when “(i) performance require-

ments impose it, (ii) schema modifications are rare, and (iii) the application code is ap-

propriately stored and documented in such a way that maintenance is guided from an

organized repository”. The NB DSS will use Meta data across the entire application in a

consistent manner with possibilities to extend keys and functionality (for display etc.),

which match these arguments.

Hydro Objects

Hydro Objects represent model specific representations of information on various types

of physical objects such as reservoirs and flow structures. Different modelling tools

have their own custom way of representing these layouts. The NB DSS system supports

interfacing with new modelling tools over time which implies that the representation of

hydro objects cannot be bound to a fully static relational data model.

Figure 5.24 and Figure 5.25 depict two possible ways of implementing a dynamic data

model for Hydro Objects.

Nile Basin DSS

Inception Report

66

Appendix D

Software Architecture Document

Figure 5.24 Conceptual Hydro object data model based on the GIS pattern (UML)

The solution shown in Figure 5.24 is modelled after a data pattern typically used in GIS

solutions, i.e. creating new tables for new types of features (feature class), in this case a

table for each new type of Hydro Object.

Figure 5.25 Conceptual Hydro object data model based on a Schema pattern (UML)

Figure 5.25 shows a solution where all hydro objects are stored within a single table.

Here the actual hydro object properties are stored as an aggregated data field, here

named Info. This field could be an XML string, a persisted .NET object or a reference

to a table
1
. The Schema validates the content of the Info field.

1
 Table in this context does not refer to a database table; but to the logical table entity managed by the Table Man-

ager, see the sub-section about Tables in Section 5.1.4.2

TypeName

TableName

..

HydroObjectTypes

Name

Attribute 1

Attribute 2

..

Reservoirs

Name

Attribute 1

Attribute 2

..

MIKEBASIN_Reservoir

Name

Attribute 1

Attribute 2

..

RiverWare_Reservoir

0..n

0..n

0..n

FeatureClassname

FeatureID

Features

Schema

...

HydroObjectSchema

Name

Info

...

HydroObjects

0..1

0..nFeatureClassname

FeatureID

Features

Nile Basin DSS

Inception Report

67

Appendix D

Software Architecture Document

The Feature table in Figure 5.24 and Figure 5.25 allows Hydro Objects to be linked to

GIS features.

The final decision regarding the Hydro Objects design will be made during the detailed

analysis and design phase.

MCA

The configuration of a MCA is stored in the database with internal configuration pa-

rameters as well as definitions of indicators, references to time series, and data tables.

As with Hydro Objects the data model to use for the MCA can be very simple with re-

spect to tables (e.g. the Schema pattern) or more explicit with tables for MCA properties

and parameters and direct references to time series, tables, indicators.

In favour of an explicit data model speaks the fact that all MCA configurations follow a

similar pattern: making a matrix of values and weights with references to internal or ex-

ternal performance indicators and criteria.

The fact that the MCA tool may evolve over time favours the Schema pattern, allowing

encapsulation of the data model of the MCA tool and the possibility to extend the func-

tionality by simply deploying a new version of the tool without having to alter the data-

base schema itself.

Final decision on the design should be made during the detailed analysis and design

phase.

CBA

CBA carries many similarities with MCA: It is complex tool in itself, uses similar refer-

ences to input data and keeps similar internal parameters as part of the configuration. As

such it should employ the same pattern for storing CBA configuration in the dataset as

does the MCA tool.

Tables
1

Tables are pieces of data – typically scalars - to be stored and used by other processes.

Each Table - including its content - can be referenced by other components through the

public interface of the Table Manager module, e.g. getting a whole Table or a single

value within a table. Typically Tables are used to collect groups of related single values,

e.g. indicators, as a transfer mechanism when using output from one tool as input for

another tool or for storing semi-structured data.

Logically speaking the Tables are similar to a spreadsheet in the sense that the user can

group related information in one matrix; e.g. indicators calculated on basis of all output

time series from a scenario simulation or indicators calculated on the same output time

series calculated in a number of different scenarios.

The physical data model behind Tables can be established in different ways

 Through a static data model supporting scalar values or

1
 Not to be confused with database tables

Nile Basin DSS

Inception Report

68

Appendix D

Software Architecture Document

 By storing a group of scalar as an entity (as a Matrix) using the Schema pattern

which could be mapped to a object model through an abstract factory mecha-

nism.

The static data model is depicted in Figure 5.26.

ID

Name

Attribute 1

Attribute 2

Type

Value

Scalars

Name

ScalarGroups

0..n

Figure 5.26 Table data based on a static data model (UML)

Here the grouping of the values is established through the ScalarGroups entity.

The Schema pattern based data model is depicted in Figure 5.27.

ID

Name

Type

Info

...

Table

Figure 5.27 Table data based on a Schema pattern data model (UML)

Here the matrix of scalars is stored as en entity itself in the Info field. The Table Man-

ager uses the Type field to serialise and de-serialise the matrix, e.g. through a schema or

directly by the data of the Tables object. This solution has the advantage of supporting

truly unstructured data, e.g. reservoir operational rules directly as supplied by reservoir

management organisation and it also provides for storing of new types data relations

without having to alter the underlying database structure.

Final decision on the design will be made during the detailed analysis and design phase.

5.1.4.3 Data Compartments

The total database schema will be partitioned into distinct data compartments. Each data

compartment will on a one-to-one basis support specific studies as conceptually de-

picted in Figure 5.28.

Nile Basin DSS

Inception Report

69

Appendix D

Software Architecture Document

Figure 5.28 Data compartments and studies

Note from the figure:

 Users that are not associated with a study; i.e. have not selected a study when

logging on to the system, will only have access
1
 to data within the global data

compartment.

 Users that are associated with a study; i.e. have selected a study when logging on

to the system, will have access
1
 to the data compartment associated with the

study and the global data compartment.

One compartment is a single security realm. I.e. user John is treated different when log-

ging in to different data compartments. E.g. John can be Study Lead in the Victoria lake

study and Study Reviewer in the Jonglie canal study.

The advantages of the above model are simplified access control settings and a simpler

role model compared to a solution where all data entities had to be configured inde-

pendently.

Partitioning of the database into compartments can be done in different ways, e.g.

physical partitioning where separate table space is created per study or as a logical por-

tioning where the partitioning happens based on either a data entity attribute or on a

meta data setting (pivoting data model pattern) Figure 5.29 and Figure 5.30 below con-

ceptually illustrate how the logically based partitioning could take place.

1
 The type of access, e.g. whether updates are allowed, depends on the role of the user within the compartments

Data compartment 1 Data compartment 2 Data compartment n
Global

Data compartment

Study:

Lake

victoria

Study:

jonglie

canal

Database

Nile Basin DSS

Inception Report

70

Appendix D

Software Architecture Document

Figure 5.29 Logically based partitioning (UML)

Figure 5.30 Logically based partitioning based under the Pivoting data model pattern (UML)

Note from the figures:

 The design in Figure 5.29 is based on a foreign key to the Compartments table

 The design Figure 5.30 is based on a Pivoting pattern defined in /5/.

The selection of the final design will be made during the detailed analysis and design

period.

5.1.4.4 Data Integrity

It is likely that multiple versions of the database will be distributed for offline use to

multiple parties – ex. multiple regional offices. In such a case, the various databases will

occasionally have to be merged. Therefore, it is not feasible to let the database make

auto-generated sequences of primary keys. Instead the Global Unique Identifier (GUID)

data type will be used as the primary key of database tables.

Id

Attribute A

Attribute B

..

CompartmentId

MyEntities

Id

Name

Compartments

Id

Name

Compartments

Id

Attribute A

Attribute B

..

MyEntities

CompartmentId

MyEntityId

MetaData

Nile Basin DSS

Inception Report

71

Appendix D

Software Architecture Document

The RDBMS will be used for maintaining data integrity. For example unique indexes,

foreign key relationships, cascading delete options and other constraints will be used to

maintain data integrity.

5.1.4.5 Data Access Pattern

The communication between the DSS Front-end and the Database is done in the indi-

vidual modules in a data access layer using the Data Access Object (DAO) pattern. In

this pattern, a DAO component defines an interface to persistence operations (CRUD)
1

and finder methods) relating to a particular entity.

The data access layer of each module includes a number of DAO components imple-

menting the generic interface IDAO<Entity>, each handling the CRUD operations for a

particular entity. In addition to the methods in the IDAO<Entity> interface, each DAO

component can implement additional methods in a DAO-specific interface (IEntity-

NameDAO).

Each entity component implements the IEntity interface. Furthermore, in the entity-

specific interface IEntityName, they will provide all the properties of that particular en-

tity. See Figure 5.31.

Database

Entity 1..n

IEntity

DAO 1..n

IEntityName

IDAO<Entity>

IEntityNameDAO

Figure 5.31 Data access through the DAO pattern (UML)

In Table 5.7, all the mentioned interfaces are shortly described.

Table 5.7 Data access interfaces

Interface Description

IEntity Interface that all Entity components implement. Includes at least an

ID property of type GUID.

IEntityName (e.g.

ITimeseries)

Entity-specific interface with all the properties of that particular entity.

IDAO<Entity> A generic interface that all DAO components implement. The inter-

face comprises methods such as Create(), Get(), GetAll(), Update()

and Delete() for handling the basic CRUD operations for a particular

Entity component.

1
 The acronym CRUD refers to the four basic operations in persistent storage: Create, Read, Update and Delete

Nile Basin DSS

Inception Report

72

Appendix D

Software Architecture Document

Interface Description

IEntityNameDAO

(e.g. ITimeseries-

DAO)

The DAO-specific interface with supplementary methods not in the

generic IDAO<Entity>. For example, ITimeseries-

DAO.GetTimeseriesValues().

5.2 Modelling Components

This section gives provides details about the modelling components Ensemble Model-

ler, Model linker and Optimizer.

5.2.1 Ensemble Modeller Component
An ensemble scenario is identical with a standard scenario except that the input time se-

ries are not single time series but groups of time series – or ensembles. I.e. the boundary

conditions are not specified as a single time series but through an ensemble.

Management of ensemble based scenarios is handled in concert by the following 2

software components:

1. The Timeseries Manager which provides functionality through tools or import

for establishing ensembles. See the description of time series in Section 5.1.4.2.

2. The Ensemble modeller which provides functionality for looping over ensem-

bles and execute the simple time series based scenarios and subsequent to the

simulation add output time series to output ensembles

3. The Scenario Manager which provides functionality for managing scenarios.

Figure 5.32 below depicts the flow for creating an ensemble based scenario.

Nile Basin DSS

Inception Report

73

Appendix D

Software Architecture Document

If ensembles

selected

Loop

Scenario

Manager

Timeseries

Manager
Database

Create scenario

Base scenario selected

Specify scenario input

Test for

ensembles

Get ensemble properties

Validate

ensembles

Get ensemble properties

Scenario created

Simplified to

focus on

ensembles

scenarios only

Store scenario

Figure 5.32 Creating ensemble scenario (UML)

Comments to the figure:

 The Scenario Manager prompts the user to specify the input time series when

creating a scenario – and in fact offers three possibilities for doing so:

o Selection of a single time series

o Selection of an ensemble

o Selection of an output time series or ensembles from another scenario.

 The Scenario Manager loops over the specified scenarios and performs a valida-

tion of the specified ensembles. E.g. using multiple ensemble requires that each

ensemble has the same number of entries.

The Ensemble modeller is also involved in running an ensemble based scenario as

shown below in Figure 5.33.

Nile Basin DSS

Inception Report

74

Appendix D

Software Architecture Document

Loop

Scenario

Manager

Timeseries

Manager
Database

Run scenario

Ensemble based
scenario selected

Run scenario step

Scenario runned

Get next timeseries

from ensembles

Get timeseries

Add output

timeseries

to ensembles

Simplified to

focus on

ensembles

scenarios only

Ensemble

Modeller

Run ensemble scenario

Add output

timeseries

to ensembles

Ensemble scenario

runned

The execution part is

omitted in order to focus

on the ”ensemble

unpacking”

Figure 5.33 Run ensemble scenario (UML)

Note from the figure

 The Scenario Manager defers running of ensemble scenarios to the Ensemble

modeller. This performing a loop over all the time series in the ensemble(s). For

each time series in the ensemble(s) the Ensemble modeller will run a time series

based scenario. The Ensemble modeller manages an optimised scenario simula-

tion but not unpacking model and setup information for each step.

 The output time series will all be stored in the database and grouped into output

ensembles

5.2.2 Model Linker Component
A scenario that includes a linked model involves automatic simulation of a number of

individual models in a sequence. One model simulation generates output time series that

automatically is fed as input time series into the next model simulation in the chain.. An

example could be: A rainfall runoff model that generates catchment runoff time series

for use in the water allocation model that again generates discharge time series that are

fed to a fully hydrodynamic model.

Compared with the “normal” scenario management, a scenario that includes linked

models involves one additional step:

1. Looping over the model simulations in the chain

Nile Basin DSS

Inception Report

75

Appendix D

Software Architecture Document

This step is managed by the Model Linker component together with the Scenario Man-

ager.

Defining a scenario that includes linked models is similar to creating a new scenario

based on a single model. It involves specifying input time series for each input point –

or boundary condition - in the combined (linked) model. This amounts to the all input

points in the participating single models minus the ones defined as transfer points that

gets data from a previous model in the sequence.

Running a scenario based on a linked model will execute the models in sequence with

boundaries and transfer as defined. The output will represent all the participating mod-

els. This is depicted in

This is depicted in Figure 5.34

Loop

Scenario

Manager

Timeseries

Manager
Database

Run(selected scenario)

Scenario selected

Model Linker

Run linked model

Get timeseries

Run model

Get timeseries

Put output timeseries Put timeseries

Model Adaper

<Model tool>

Provide timeseries

Run model

Get output

timeseries

Figure 5.34 Running a scenario based on a linked model (UML)

Nile Basin DSS

Inception Report

76

Appendix D

Software Architecture Document

Comments to the figure

 The „Run linked model‟ method will loop over the sequence of models in the

linked model

 Each loop will be a „single‟ model run. The Model Linker will provide time se-

ries from the database and/or from the previous model in the sequence.

 The Model Linker will retrieve output time series both for database storage as

well as for input to sub-sequent models in the linked model.

5.2.3 Optimizer Component
Simulation based optimisation involves running a model setup through a number of cy-

cles and for each cycle do the following

a. Calculate variable parameters (to be optimised)

b. Prepare the model setup

o Prepare input time series

o Prepare initial conditions

o Set the optimisation parameters

c. Run the model

d. Aggregate and evaluate outputs

e. Calculate objectives

f. Assess objectives with respect to optimisation targets

g. Stop if OK, otherwise restart at a)

Management of optimisation based scenarios is handled by the following 3 software

components:

1. The Timeseries Manager which provides time series information during configu-

ration and execution of scenarios

2. The Optimiser which is a sub component to the Scenario Manager component.

This component provides functionality for defining scenarios based on optimisa-

tion. The Optimiser modeller also manages the looping and evaluation of objec-

tives when running the optimisation scenarios.

3. The Scenario Manager which provides its standard functionality for managing

scenarios.

Figure 5.35 below depicts the flow for creating an optimisation scenario.

Nile Basin DSS

Inception Report

77

Appendix D

Software Architecture Document

Optimizer
Scenario

Manager
Database

Time Series

Manager

Define

Optimisation

Scenario

Save Scenario in database

Get Time Series

Actor

Get Time

Series Data

Specify

optimisation

parameters

Specify

optimisation

outputs

Figure 5.35 Creating an Optimisation scenario (UML)

Note from the figure:

 Get Time Series activity is carried out for as many time series as is required to

configure the scenario.

 The Optimiser is used for specifying the additional properties of the optimisation

scenario.

When the Scenario Manager executes the optimisation scenario the loop described

above must be followed. Execution will still take place using adapters (they are the only

ones knowing the proprietary formats and layouts of the model setup). Hence the

adapter interface must support setting of parameters as specified by the Scenario Man-

ager.

The Optimiser is also involved in running an optimisation scenario as shown below in

Figure 5.36.

Nile Basin DSS

Inception Report

78

Appendix D

Software Architecture Document

loop

Model tool
Scenario

Manager

Model Adapter

<Model tool>Optimiser Database

Get DSS model setup

Run

Optimisation

Scenario

DSS model setup

Get DSS Optimisation Scenario

DSS OptimisationScenario
Establish simulation folder structure

Restore model setup

New (DSS Scenario)

Preprocessing()

Establish timeseries

Set initial conditions

Set parameters

RunModel()

Execute model tool

PostProcessing()

Extract result

Get results

Results

Save results

Results

Save simulation

Calculate parameters

Set optimisation

parameters

Run Model

Set parameters

Get Results

Results

Extract result

Results

Loop until

objectives are

met or limit

reched

Evaluate objectives

The adapter

depends on the

model tool in

action

Figure 5.36 Run optimisation scenario (UML)

Note from the figure

Nile Basin DSS

Inception Report

79

Appendix D

Software Architecture Document

 The Optimiser and Scenario Manager collaborate in order to run optimisation

scenarios. Optimiser controls the loops while objectives are still to be evaluated.

The Scenario Manager controls the overall execution and interaction with the

database.

 The execution of the model via the adapter is controlled by the optimiser allow-

ing multiple model executions during execution of only one scenario

 The post processing will return the optimum result

5.2.3.1 Implications

An optimisation tool can do the above in a general manner, but it requires the model(s)

involved in the execution to be prepared for use by the tool in order for it to change the

values of selected parameters (Ex. AUTOCAL not knowing the proprietary format ap-

plies a simple scheme of replacing text strings in setup files). As a result of this the

model setup(s) can only be used for the optimization problem at hand.

The aim of the NB DSS is to provide general optimisation functionality where the pa-

rameter ranges, objective functions, and criteria are specified in the database irrespec-

tive of the model setup(s) used in the optimisation.

The choice of wrapping models with adapters (see Section 5.1.3.1) as the means of inte-

gration into the NB DSS for both configuration and execution then implies that the

adapter be capable of providing:

 The knowledge on available optimisation parameters in the model setup

 Facilities to set parameters into the model setup during execution

Since the adapter provides all data describing a model setup during registration, the no-

tion of optimisation parameters must be added to the definition of the IConfigAdapter

IModelSetup interfaces presented in Section 5.1.3.2. Similarly the IRuntimeAdapter in-

terface shall include methods to set parameters as well as retrieve the optimal parame-

ters at the end of the optimisation exercise.

The data model of the Model Setup and Scenario in the NB DSS shall contain properties

describing the possible optimisation parameters (Model Setup) as well as the configura-

tion of the use of them (Scenario). The Scenario Manager shall enable the user to con-

figure the optimisation properties of the Scenario.

5.3 Component Interactions

Components interact with respect to both functionality and data. This section exempli-

fies how the identified software components interact with respect to fulfilling the func-

tionality of the original user stories.

Selected sections of the user stories have been chosen in order to highlight some of the

key functionalities with respect to modelling:

 Model Setup, Scenario, run Scenario and post-process output (UC-01: Identify

causes of declining Lake Victoria water level, steps 4-7).

Nile Basin DSS

Inception Report

80

Appendix D

Software Architecture Document

The use cases steps cover the whole cycle from creating a new model setup,

making it available in the NB DSS, defining scenarios, running them and evalu-

ating the outputs.

 Scenarios with Linked models (UC-02: Select best option for Jongeli Canal, step

IV)

This use case step describes how to run a linked model from the NB DSS

 MCA (UC-03: Determine Preferred Cascade and first dam of EN, step V)

Setting up and conducting an MCA analysis is described in this use case step

 Ensemble modelling (UC-03: Determine Preferred Cascade and first dam of EN,

steps 2.3, 4.2, 4.5 and 4.6)

The selected steps from UC-03 describe the use of ensemble modelling. The in-

termediate steps relate to other activities which are largely independent of the se-

lected steps.

 Optimization (UC-04: Select best investment option for NEL region, steps 8-13)

This part of the use case shows how to perform optimization.

A sequence diagram for each of the above samples of activities illustrates how the soft-

ware components interact to provide the required functionality and how data are ex-

changed.

The diagrams show that the generalized use cases derived during the use case analysis

are not sufficient to describe all activities in detail. Hence, some activities in the dia-

gram are potential additional use cases to be further elaborated during the detail analysis

and design period.

The sequence diagrams use the following notation:

 The steps from the User Stories are drawn as “Found” messages from outside

which the user must perform

 Activities matching existing defined use cases have text in normal font

 New activities (potential use cases) have text in italics

 Actors are – apart from the user – the defined software components and the da-

tabase.

 Return messages are not included in order to focus on the activities rather than

the data flow.

5.3.1 Run model setup

Nile Basin DSS

Inception Report

81

Appendix D

Software Architecture Document

Table 5.8 below is the extract from User Story 1 that has been converted to a sequence

diagram in Figure 5.37. The “Generalize use case” column in the figure is the general-

ised use case derived from the Use case analysis, see SRS /2/.

Nile Basin DSS

Inception Report

82

Appendix D

Software Architecture Document

Table 5.8 Selected steps from UC-01

Actor Workflow Generalized use case

Modeller 4. Model setup – Lake Victoria (monthly time
step)
a) Configure a reservoir water balance model

setup for lake Victoria
b) Calibrate model with observed inflow and

outflow time series

4a:

Setup MIKE BASIN

4b:

Calibrate MIKE BASIN

Modeller 5. Define scenarios:
a) Scenario 1: Lake outflow governed by

agreed curve
b) Scenario 2: Lake outflow governed by natu-

ral outflow

5a:

Register model

Create scenario

5b:

Create scenario

Modeller 6. Simulate scenarios 1 and 2 6:

Run scenario

Modeller 7. Post-process scenario run results

a) Determine the trends in lake water level se-

ries of observed lake water level and the
two scenarios

b) Determine estimated lake level decline for
scenarios 1 and 2 and compare with ob-
served decline

7a:

Use time series tool

7b:

Visualise time series

Nile Basin DSS

Inception Report

83

Appendix D

Software Architecture Document

Model Tool

(MIKE BASIN)

Model Adapter

(MIKE BASIN)

Create MIKE BASIN Model

Setup MIKE BASIN

Calibrate MIKE BASIN

Register model
Retrieve configuration

Database

Save Registration in database

Time Series

Manager

Create Senario

Configure Sceneario

Run Scenario

Run model

Run model tool

Use Timeseries Manager

Save Scenatio in database

Save Simulation in database

Get Time Series

Create new model

Get configuation data

Get Time Series

Post-process

scenario run results

Get Time

Series Data

Use timeseries tool

Visualise timeseries

Actor

Define Scenarios

Simulate scenarios

Model Setup –

Lake victoria

Get Time

Series Data

Get Time

Series Data

Scenario

Manager

Hydro Object

Manager
GIS Manager

Export time Series

Export Hydro Objects

Export GIS data

Figure 5.37 Setting up and running the Lake Victoria model (UML)

Note from the figure that

 Export of data to be used for modelling is carried out prior to creating the model

in the model tool

 Some actions may be required by the Scenario Manager to establish the envi-

ronment for the user in order to setup and calibrate a new mode

 The “Register model” and “Create Scenarios“ activities in the Scenario Manger

involve activities by several other components

 The Scenario Manager runs a model tool via the “Model Adapter”

 Post-processing is to a large degree a standard activity performed by the user via

the Timeseries Manager.

Nile Basin DSS

Inception Report

84

Appendix D

Software Architecture Document

5.3.2 Linked models
The selected steps from UC-02 focusing on establishing and linking models are de-

picted in the diagram in Figure 5.38.

Table 5.9 Selected steps from UC-02 regarding linked models

Actor Activity Generalized use case

Modeler IV Scenario Configuration and Run

1. Copy and modify water spine model of
baseline scenario and define different
sets of parameters for inlet node of
Jonglei Canal, such as:

A Water abstraction rules for flows
(e.g. as diversion flow as a func-
tion of another state variable of
another hydro-object)

B Water abstraction flows/levels
(e.g. as time series)

IV.1.A

Clone and modify

MIKE BASIN model

and scenario

IV.1.B

Clone and modify

MIKE BASIN model

and scenario

2. Set-up and configure hydraulic model of
Jonglei-Canal; use DEM and other data
sets to determine cross-sections and
longitudinal profile

IV.2

Use GIS tool

Setup MIKE 11 model

Register MIKE 11

model

3. For each set of parameters define a
scenario and link the set of models
(rainfall-runoff and water spine) with the
hydraulic model of Jonglei Canal (in-
cluding definition of modelling se-
quence) – new linkage between water
spine and hydraulic model through inlet
and outlet node of Jonglei Canal

IV.3

Create linked model

Create scenarios

System 4. Simulate each Jonglei-Canal scenario;
run set of models (according to defined
modelling sequences)

4:

Run scenario

Nile Basin DSS

Inception Report

85

Appendix D

Software Architecture Document

Model Tool

(MIKE BASIN)

Model Adapter

(MIKE BASIN)

Scenario

Manager
Database

Time Series

Manager

Clone and modify

MIKE BASIN model

and scenario

Actor

Copy and modify water spine

model of baseline scenario

and define different sets

of parameters

Setup MIKE BASIN

Calibrate MIKE BASIN

Unpack MIKE BASIN Model

Re-register model
Retrieve

configuration

Save Registration in database

Get Time Series
Get Time

Series Data

Update Senario

Save Scenario in database

Get Time Series
Get Time

Series Data

Configure Sceneario

Clone Model

Clone Scenario

Get configuation data

Save in database

Figure 5.38 Creating alternative models and linking them, part 1/2 (UML)

Note from the figure that

 Cloning of a model setup and scenarios is a database activity.

 Editing of a setup is both setting up the model in the model tool and calibrating

it

 After editing, the re-registration of the model setup updates the cloned configu-

ration in the database

Nile Basin DSS

Inception Report

86

Appendix D

Software Architecture Document

Model Tool

(MIKE 11)

Model Adapter

(MIKE 11)

Scenario

Manager
Database

Time Series

Manager

Actor

Set-up and configure

hydraulic model of

Jonglei-Canal; use

DEM and other data

sets to determine

cross-sections and

longitudinal profile

Register model
Retrieve

configuration

Save Registration in database

Get Time Series
Get Time

Series Data

Create Linked

Senario

Save Scenario in database

Get configuation data

Create MIKE 11 Model

Setup MIKE 11

Calibrate MIKE 11

Create new model

Use GIS tool

GIS Manager

Run Linked

Scenario

Run model
Run model tool

Save Simulation in database

Simulate each

Jonglei-Canal

scenario

For each set of

parameters define

a scenario and

link the set of

models

Configure scenario
Get Time Series

Get Time

Series Data

loop

loop

sequence

Model Tool
Model Adapter

<Model tool>

Adapter depends

on the model tool

in action

Figure 5.39 Creating alternative models and linking them, part 2/2 (UML)

Note from the figure that

 Setting up the HD model is similar to the water spine model: use of the model

tool for setting up and configuration followed by registration into the NB DSS

Nile Basin DSS

Inception Report

87

Appendix D

Software Architecture Document

database. Note: Cloning it is a similar to MIKE Basin as described in Figure

5.38

 The linking of the two models defines the transfer of time series (output to input)

and the sequence in which to execute the model.

 A scenario definition for the linked model is similar to that of any other model,

only using the combined conditions for the participating models.

 From a user perspective running the scenario with linked models is similar to

running any other scenario. Internally Scenario Manager will perform the trans-

fer (sequentially) of time series from output to input as defined in the linked

model.

5.3.3 MCA
Table 5.10 shows the selected steps from UC-02 regarding use of MCA for analysis.

Figure 5.40 depicts the activities in a diagram.

Table 5.10 Selected steps from UC-02 regarding MCA

Actor Activity Generalized use case

Modeller & De-

cision Maker
V Indicator Definition (and Calculation)

1. Review all information that was made
available through the data pre-
processing phase using the DSS GUI

V.1

Visualize GIS data

Visualize time series

2. Define relevant indicators for scenario
comparison and MCA, such as

A Total area reclaimed for agricul-
ture

B Extent of change in swamp area
(permanent and seasonal) and its
impacts on the livelihood of the
community (such as decrease in
livestock, grazing area, fishery
production)

C Impacts on the flora and fauna that
exist in the swamp

D Total benefit from conserved water
(in this case through assessment
in other use cases of the DSS)

V.2.A

Define indicator

V.2.B

Define indicator

V.2.C

Define indicator

V.2.D

Define indicator

3. Define relationships between model
data/properties and the above indica-
tors

A Import and/or edit tables that rep-
resent relationships (in this case
these relationships are derived
outside the scope of the DSS)

B Write scripts to formulate func-
tional relationships and/or aggre-
gations as appropriate

V.3.A

Use MCA indicator tool

V.3.B

Use MCA indicator tool

System 4. Calculate indicators for all scenarios in-
cluding baseline scenario (convert

V.4

Run MCA

Nile Basin DSS

Inception Report

88

Appendix D

Software Architecture Document

Actor Activity Generalized use case

model outputs to indicators as defined
in indicator definition phase) and con-
vert the criteria

5. Populate MCA with criteria as specified
and defined in the indicator definition
phase

V.5

Run MCA

Nile Basin DSS

Inception Report

89

Appendix D

Software Architecture Document

MCAAnalysis Manager GIS Manager
Time Series

Manager
Actor

Review all information

that was made

available through the

data preprocess-ing

phase using the

DSS GUI

Visualise GIS data

Visualise Time series data

Define Indicator

Define relevant

indicators for

scenario comparison

and MCA

Use MCA

indicator tool

Define relationships

between model

data/properties and

the above indicators

Run MCA

Calculate indicators

for all scenarios

including baseline

scenario

Get Time Series

Get indicators

Table Manager

Get Tables

Define table

Get time series

Get GIS data

Get indicators

repeat

repeat

repeat

repeat

Figure 5.40 MCA analysis (UML)

Nile Basin DSS

Inception Report

90

Appendix D

Software Architecture Document

5.3.4 Ensemble modelling

Table 5.11 Selected steps from UC-03 regarding ensemble modelling

Actor Workflow Generalized use case

Group of Hy-

drologists, GIS

experts collabo-

rating (including

across country)

on the study

(including syn-

chronization)

2.3 Prepare data for study
a) Import all data not available within data-

base (from spreadsheet, ascii files, man-
ual entry, etc)

b) Quality assure hydro-meteorological data

c) Generate/prepare in-stream flow require-

ments at key control points

d) Estimate/generate flow series for un-

guaged catchments

e) Generate inflow Time Series (TS) at dam

sites

f) Prepare rainfall TS at dam sites and irri-

gation development sites

g) Prepare TS of temperature, evaporation,

etc at irrigation development sites

h) Import/Determine flood damage zones

characteristics (damage curves/tables)
i) Import population distribution and density

data

j) Compile operation rules of existing reser-

voirs

k) Generate/import sediment yields at key

dam sites (could involve catchment ero-
sion estimation)

l) Prepare characteristics of dams (area-
capacity curve, spillway rating curves, etc)

m) Estimate water demands (such as irriga-
tion sites, major urban centres)

n) Generate ensemble of flow time series
(daily time step)

2.3.a

Import time series

Import GIS data

Import tables

2.3.b

Use time series tool

Edit time series

Create time series

2.3.c

Create time series

2.3.d

Use rainfall runoff

model

Use time series tool

2.3.e

Use rainfall runoff

model

Use time series tool

2.3.f

Create time series

Use time series tool

2.3.g

Create time series

Use time series tool

2.3.h

Import GIS data

Import table

2.3.i

Import GIS data

2.3.j

Create hydro object

2.3.k

Use soil erosion tool

Import time series

Link time series to fea-

ture

2.3.l

Use hydroobject tool

2.3.m

Use demand calculator

tool

2.3.n

Use ensemble genera-

tor tool

Nile Basin DSS

Inception Report

91

Appendix D

Software Architecture Document

Actor Workflow Generalized use case

Modeller 4.2 Link generated ensemble with model setup
of each scenario

4.2

Setup ensemble sce-

nario

Modeller 4.5 Simulate the sequencing scenarios using
the ensemble of input series

4.5

Run ensemble sce-

nario

Modeller 4.6 Analyse ensemble simulation run results
and synthesize statistical outputs (mainly
indicator values given under 4.3)

4.6

Visualise time series

Use time series tools

Visualise tables

Figure 5.41 Ensemble modelling, part 1/2 (UML)

Table

Manager

Time Series

Manager

GIS

Manager

Hydro Object

Manager
DSS ToolsActor

Prepare data

for study

Import GIS data

Import Time series data

Import Tables

Use Time series tool

Edit Time series

Create Time series

Use rainfall runoff tool

Use hydro object tool

Associte with hydroobject

Use soil erosion tool

Link time series to feature

Use ensembe generator tool

repeat

Nile Basin DSS

Inception Report

92

Appendix D

Software Architecture Document

Note from the figure that

 Numerous tools and components are in play for preparing data

 The order of the use of tools lies with the user (indicated by “repeat”)

Figure 5.42 Ensemble modelling, part 2/2 (UML)

Table

Manager

Time Series

Manager
DSS ToolsActor

Link generated

ensemble with

model setup of

each scenario

Simulate

the sequencing

scenarios

Analyse ensemble

simulation run results

and synthesize

statistical outputs

Scenario

Manager

Setup ensemble

scenario

repeat Run ensemble

scenario

repeat

Visualize Time series

repeat

Visualize Tables

Use Time series tool

Nile Basin DSS

Inception Report

93

Appendix D

Software Architecture Document

Note from the figure that

 Setting up and running ensemble scenarios is similar to running any other sce-

nario, with the differences being the ensemble loop during simulation and that

collection of results and statistics as well as post processing are additional sets

of specifications to include with the scenario.

 The user can assess results by using the available tools and viewers following

the simulations.

5.3.5 Optimization

Table 5.12 Selected steps from UC-04 regarding optimization

Actor Work Flow Generalized use case

Water re-

sources

economist

/Modeler

8. Determine parameters for simulation based
optimization including Objective functions and
Constraints
A. Define objectives

I. Define objective function to Maximize
revenue from Power production or Irri-
gation crop production.

II. Define objective function to minimize
cost. (the cost can be investment, envi-
ronmental mitigation)

B. Define constraints
I. Minimum Lake Water level (Time se-

ries)
II. Minimum downstream water release

(Ecological Flow) (Time series)
III. Acceptable water quality (In

terms of water quality parameters like
Nutrient level, BOD, sediment load etc.)

IV. Minimum Economic and finan-
cial parameters (such as: IRR, B/C ra-
tio, NPV)

V. Maximum cost
C. Determine/define method of optimizer.

Define optimization

scenario

Create optimization

scenario

System 9. Optimization

Maximize benefits/Minimize cost (impacts)

with respect to pre defined objective functions

and constraints.
A. Run simulation for the selected scenario

a number of times by varying the sizes of
reservoirs and/or scales of irrigation de-
velopments and determine

i TS of Water quality parameters
including sediment load

ii TS of Lake Victoria water level
iii Flood Prone areas: extent of

Run optimize scenari-

oUse Indicator tool

Setup CBA

RunCBA

Nile Basin DSS

Inception Report

94

Appendix D

Software Architecture Document

Actor Work Flow Generalized use case

economic damage
iv Power generation
v Irrigated areas & consumptive

use of water
vi Affected tourist attraction sites.

B. Determine costs and benefits for each of

the simulation runs: (using specs of step
5)

i Determine costs: Investment and
running costs, economic losses
due to flooding etc.

ii Determine benefits: Revenue
from power generation, irrigation
development fisheries etc.

C. Calculate economic and financial pa-

rameters (B/C, EIRR, FIRR, NPV) for
every simulation

Water re-

sources

economist

/Modeler

10. Alternative selection.
A. Select optimum alternative of the sce-

nario under consideration.
B. Sensitivity analysis with respect to dis-

count rate and other parameters like de-
lay in construction and change in cost of
construction etc.

Take decision

Setup CBA

Run CBA

System 11. Convert Model outputs into user defined indi-
cators for the optimum alternatives of each
scenario. (using specs of step 6)

Setup MCA

Decision Maker 12. Run the MCA tools and Select the best option Run MCA

Take decision

Decision Maker

and Modeler

13. Generate Report Visualize time series

Visualise tables

Publish to report

Nile Basin DSS

Inception Report

95

Appendix D

Software Architecture Document

Figure 5.43 Optimization (UML)

Note from the figure that

 Defining a scenario lies with the user.

Time Series

Manager

Senario

Manager

Analysis

Manager
Actor

Determine parameters

for simulation based

optimization including

Objective functions

and Constraints

Table

Manager

Create optimization scenario

Run optimization scenario

Optimization

Alternative

selection

Setup CBA

Run CBA

Take decision

Define optimization scenario

Convert mode

outputs into

user defined

indicators

Setup MCA

Take decision

Run MCA Tools

and select the

best option

Run MCA

Generate

Report

Visualize Time series

Visualize Tables

Publish to Report

repeat

Report

Manager

repeat

Use indicator tool

Setup CBA

Run CBA

Nile Basin DSS

Inception Report

96

Appendix D

Software Architecture Document

 Creating a scenario will (likely) involve also setting up and calibrating a model

to run, but may use models already existing in the NB DSS

 Creation of an optimization scenario is like defining other scenarios, only rules

for optimisation are additional specifications.

 Running an optimization scenario to the user is similar to running any other sce-

nario. The logic being executed will hold the optimizing evaluation and parame-

ter adjustment (to be conducted via the adapter)

 The actor “System” is used in a number of steps, which may imply some activi-

ties are “within the system” or “batch driven”. This is not clarified yet.

 Decision taking is an activity with the user

 Setting up and running CBA and MCA analyses as shown will involve many

components for indicator definition as well as calculation (not shown here)

 Report generation will involve different tools in the NB DSS

Nile Basin DSS

Inception Report

97

Appendix D

Software Architecture Document

6 VIEWPOINT: SYSTEM USE

This view point addresses the system seen from a user perspective. The aspects ad-

dressed include user profiles and the DSS Front-end user interface (UI).

6.1 User profiles and permissions

The NB DSS will be accessed and used by many – different – users. They will access

the system with different purposes and performing different actions. A system for de-

termining their level of access and permissions on the system for accessing functionality

and data will be devised.

The system will have the following characteristics:

 Be simple to administer

 Ensure people get access to what they are supposed to – no more, no less

 Group people in logical/organisational groups with common access rights and usage

of the system

 Allow sharing of data across institutions and countries, hence rules must apply how

to transfer permissions

 Allow users to cooperate and work together on studies sharing data and results.

Handling of data in a study is described in more details in Section 5.1.4.3.

6.1.1 User groups
In order to avoid detailed maintenance of user permissions the access system will use

groups of users – which share common rules of permissions to functionality and data.

Each user will be member of one or more groups.

A minimum set of user groups will exist by default in all installations, but others may be

created locally according to needs. The default groups are:

 Everybody

All users are member of this group by default. This group cannot be removed. The

users of this group can do simple things like view data and make reports, but not add

data or alter the database content.

 Data Owner

Users in this group can administer data at the global level.

 Administrators

The administrator can do everything, but also perform certain system tasks such as

adding new user, create new groups and create new studies.

Nile Basin DSS

Inception Report

98

Appendix D

Software Architecture Document

When a new user is added to the system he is by default assigned to the “Everybody”

group, getting the associated permissions. When a new group is defined it can be de-

fined as a copy of an existing group as a starting point and then from there on modified

with respect to assigned resources and actions.

6.1.2 Study groups
A user that has been assigned the role as Study Owner can administer the permissions to

functionality and data within the study in 3 groups:

 Study Reviewer

A study reviewer has permission to view all data in the study.

 Study Member

A study member can manipulate all data within the study

 Study Owner

The study owner can delegate other users to become administrator of the study as

well as assign users to the Study Users and Study Viewers groups. Only Study

Owners can remove a study.

6.1.3 Functionality permissions
A user is member of one or more groups. Members of a group are allowed access to per-

form an action on a resource. If permission is not given to any groups of which a user is

member a user does not have access to the action and resource. If different levels of ac-

cess are given a user through group memberships the highest level prevails.

Resources and associated actions are defined by the DSS Front-end modules providing

the functionality. Each module will update the list of resources and actions as part of the

installation and define permissions to the 4 default groups following the general guide-

lines above. The set of permissions can be modified by the administrator.

Examples of some resources and some actions are:

 Time series

o Create time series

o Import time series

o Import time series data

o View time series

 Study

o Create study

o Add Study Administrator

Nile Basin DSS

Inception Report

99

Appendix D

Software Architecture Document

o Remove Study Administrator

o View Study

 Users

o Create user

o Edit user

o Delete user

o Assign user to a group

o Remove user from a group

 Model Setups

o Create model setup

o Import model setup

o Edit model setup

o Delete model setup

o Promote model setup to common data

6.1.4 Data permissions
All data entities (such as time series, models, scenarios etc.) will be created in the sys-

tem with as set of defined permissions. These permissions are set according to a set of

simple policies:

 When created in the Global data area the permissions are:

o Read for Everybody

o Read, Update, Delete for Administrators

Only Administrators have permissions to create data in the Global data area.

 When created inside the framework of a study - manually or through a process -

permissions are created for the study user groups.

6.2 DSS Front-end UI

This Chapter describes the overall design of the DSS Front-end user interface (UI). It is

the Shell component that is responsible for displaying the UI. For a detailed technical

description of the Shell component, see Section 5.1.2.2

The DSS Front-end is a Windows application. It has an IDE-style user interface where

all windows reside under a single parent window. The IDE-style UI comprises for ex-

Nile Basin DSS

Inception Report

100

Appendix D

Software Architecture Document

ample dockable
1
 and collapsible child windows, tabbed windows and splitters for resiz-

ing of child windows. Generally, the UI is inspired by other well-known IDE-style UI‟s

like for example Microsoft Outlook and Microsoft Visual Studio.

Conceptually, the UI appears as illustrated in Figure 6.1, with a main window (the

Shell) hosting a number of child windows of different types.

Figure 6.1 The DSS Front-end Shell UI

The different types of windows in the Shell are:

 Data Explorers (one or more)

 Data Views (zero or more)

 Tools (one)

 Properties (one)

The Data Explorers window and the Data Views window are tabbed windows acting as

containers for Data Explorer windows and Data View windows. For a detailed technical

description of the modules, see Section 5.1.2.3.

In the following sections, each of these window types will be described.

1
 The window can be “glued” to another window

Nile Basin DSS

Inception Report

101

Appendix D

Software Architecture Document

6.2.1 Data Explorers
Data Explorers are used to retrieve a subset of the data that is contained in the database.

Data may be retrieved according to a user defined search/filter criterion – for example

filtering by attributes - or by choosing a criterion from a list of previously saved criteria.

Data Explorers can be of more general character, such as e.g. the Timeseries Explorer

and GIS Explorer, or tailored to more specific tasks, such as e.g. the Scenario Explorer.

Although the different Data Explorers may differ in appearance, they will normally con-

sist of a set of controls that are used to build the query, and a section that lists the re-

trieved data – typically in a tree view.

Figure 6.2 Example of Data Explorer window

6.2.2 Data Views
Data Views are used to present the data. Normally they include UI controls such as

charts, tables or maps. In Figure 6.3 below, an example of a data view window imple-

mented by the Timeseries Manager is shown. This data view utilises a chart control.

Nile Basin DSS

Inception Report

102

Appendix D

Software Architecture Document

Figure 6.3 Example of a Data View window

6.2.3 Properties
Whenever a UI object

1
 is selected in the DSS Front-end - normally by clicking on it -

the Properties window displays a tree of available property categories.

When a property category is selected, the corresponding properties are shown, and can

be edited. For a chart data series, the property categories include for example Marker

Lines, Appearance Settings, Stripline Settings and Chart Axes Settings. If for example

the Appearance Settings category is selected, the Chart Style, Color Settings, Line Set-

tings and Marker Settings can be set in the Properties window as shown in Figure 6.4.

1
 A UI object can be e.g. one or more time series selected in the Timeseries Explorer, a y-axis in a time

series plot, a table column, or one or more map features.

Nile Basin DSS

Inception Report

103

Appendix D

Software Architecture Document

Figure 6.4 The Properties window

6.2.4 Tools
Similar to the Properties window, whenever one or more UI objects are selected in the

DSS Front-end, the Tools window displays a tree of tools that are registered to work on

the selected object(s).

Hence, if e.g. a time series has been selected, the Tools window will include tools such

as Extract Period, Resample, Fit to Normal Distribution etc. as shown in Figure 6.5.

Nile Basin DSS

Inception Report

104

Appendix D

Software Architecture Document

Figure 6.5 The Tools window

When a tool is selected in the Tools tree, it can be configured in the Properties window

and executed. Moreover, a tool configuration can be saved, and saved configurations

will appear as child nodes to the original tools in the Tools tree.

For a detailed technical description of the Tool components, see Section 5.1.2.4.

6.2.5 Notifications
This section describes how to use messages and exceptions within the NB DSS compo-

nents, as well as the underlying architecture.

Messages in this context are dialogs displaying Information, Warnings, Confirmations,

User- and Program Errors to the user.

6.2.5.1 Message types – description

The different types of messages that are supported by the NB DSS Message Framework

are described in the following sections, along with guidelines on when to use the differ-

ent types.

6.2.5.2 Informational messages

This message type shall be used when the system needs to present useful and relevant,

but not critical, information to the user. The information messages do not require imme-

diate user actions and users can freely ignore them. The Information dialog is shown as

a transitory dialog that, if the user does not click the dialog, disappears after 5 seconds.

Example: When a user adds a time series to an existing chart that contains more than

one chart area, it may not be apparent which chart area the series was actually added

to. The task of the message framework would in this case be to provide the information

to the message control that would allow the system to inform the user about which chart

area the series was added to.

Nile Basin DSS

Inception Report

105

Appendix D

Software Architecture Document

6.2.5.3 Warnings

Warnings are used to inform the user of a condition that might cause a problem in the

future. A warning could also be appropriate if the user is about to perform an action that

has significant consequences or cannot easily be undone.

Example: The user is about to close the application without saving changes to the pro-

ject file.

The Warning Control is a modal message box, having Yes/No buttons.

6.2.5.4 Confirmations

Confirmations are used to confirm actions that have significant or unintended conse-

quences.

Example: The user may be asked to confirm the deletion of data.

The Confirmation Control is a modal message box, having Yes/No buttons. The differ-

ence between a confirmation and a warning is the icon displayed on the message box.

The standard confirmation dialog is provided with Yes/No buttons. If required, a cus-

tomizable confirmation dialog can be invoked providing more action options to the user.

6.2.5.5 User input errors

A User Error Control is used to inform the user of a problem caused by invalid user in-

put. It should present the user with guidelines on how to correct the error, so the task

can continue.

6.2.5.6 System errors

A Program Error alerts users of a problem that has already occurred. Program errors are

a result of a bug or insufficient error handling in the code, and needs to be reported to

the Application responsible within NBI, so the problem can be fixed. System errors are

always logged to the Windows Event log with a stack trace showing where in the appli-

cation, the error occurred.

6.3 Using the application

6.3.1 Start-up and login
During the login process the user connects to a DSS database (details provided by the

system administrator or similar) and specifies a set of valid credentials (username and

password) for the DSS database. The user can also select the Study he wants to log on

to (see Section 6.1.2).

The user needs to have a valid account in order to logon. If he logons on to a specific

Study he also needs to be associated with that study.

6.3.2 Navigation
Within a Study the user is able to access the global as well as local (to the Study) data

for manipulation.

Typical activities are:

 The user can browse the catalogue of data, e.g. time series and map layers.

Nile Basin DSS

Inception Report

106

Appendix D

Software Architecture Document

 The user can create maps by adding map layers to it

 The user can plot time series by selecting the time series in the Data Explorer and

chose the Plot command. The plot layout is configurable.

 The user can manipulate time-series via the analysis tools or define a sequence of

analysis tools to be executed (with associated tool parameters and settings). The

configuration (parameters, sequences etc) of these data manipulations may be stored

for later re-use.

 The user can register a model (already prepared in a modelling tool) with the sys-

tem, linking the model setup time series to time series in the system and creating

system representations of key features of the model configuration in the database as

part of the model description.

The available set of functionalities is determined by:

 The installed modules (the system is expandable)

The different modules provide different functionality (Time series Management,

Scenario Management, etc). The system is expendable if new functionality is re-

quired this can be added via new modules.

 The user level (permissions)

See further details on user profiles and permission in section 6.1.

 The data

Some parts of the functionality relates to certain data and data types, e.g. plots of

time series. The functionality becomes available to the user when working with the

relevant type of data for that functionality, for instance as new options in a pop-up

menu or appearance of certain tools in a tool box.

6.4 Scripting

The UI is not the only way to interact with the DSS Front-end. It is also possible to in-

teract with the system programmatically through scripting. As explained in Chapter /5/,

all of the modules follow a layered architecture having a data layer and a business

layer..

Most functionality provided by the business service layers are based on documented

public interfaces. This makes it possible to programmatically access the business ser-

vices and thereby automate interactions with the system. Scripting is just another way

than the UI to interact with the system; it does not provide additional functionality in it-

self

Model tools providing .NET based or COM based public interfaces can be scripted from

the script component

Nile Basin DSS

Inception Report

107

Appendix D

Software Architecture Document

Figure 6.6 below – copied from Chapter 5 – is key to understand how scripting is im-

plemented with the DSS Front-end.

Module 1..n

Application

IModules

IModuleName

Tool 1..n

IModule ITool

ITools

Figure 6.6 Application, Modules and Tools components (UML)

The Application component is the component that glues all the other components

(Modules and Tools) together and forms a single application. In itself the Application

component does not provide any user interface. This is provided by the Shell compo-

nent. This is discussed in more details in Section 5.1.2.1.

When a user wants to script some functionality in the DSS Front-end, the Application

component provides the root of the object model (the entry point to the scripting func-

tionality). Access to Modules and Tools are provided through the Application object.

The text box below shows in pseudo-code how to use the Application object, the Time-

series Manager and a Tool to calculate the mean value of a time series.

The business service layer is exposed as Microsoft COM components which make it

possible to use all script languages that can work with COM interfaces. Examples are

VBScript, Python, and Perl.

The DSS Front-end will support scripting by having a code editor, the Script Manager

that can be used to write and execute scripts and store them within the DSS Database.

// Instantiate the Application object

app = CreateObject(”DSS.Application”)

// Get a timeseries from the database

tm = app.GetModule(”TimeseriesManager”)

ts = tm.GetTimeseriesById(27)

// Load and execute the Mean tool

tool = app.GetTool(“Mean”)

tool.SetData(ts)

mean = tool.Execute()

Figure 6.7 Sample script

Nile Basin DSS

Inception Report

108

Appendix D

Software Architecture Document

6.5 Scheduling and batch

The NB DSS will offer possibilities for scheduling and batch processing. Likely scenar-

ios for running tasks in batch are:

 A long running task which does not require user interaction

 Repeatable tasks

 A sequence of operations to be started automatically

While scenarios for using a scheduling mechanism include

 Automatic transfer of data to and from the NB DSS

 A wish to execute a batch task at a given time

Furthermore the batch and scheduling functionality is linked to the need for load-

spreading, i.e. dividing execution of long running and CPU demanding tasks across dif-

ferent machines.

Scheduling will require a service to provide the trigger mechanism to start a process -

either by event or by schedule. Different possibilities exist for this:

 Using the built-in Scheduled Tasks service in Windows. Starting from Windows

Vista the scheduler allows definition of multiple steps in one task. It can execute any

executable using windows credentials.

Benefits from using the Windows service include:

o It does not require special installation

o It will be available for all NB DS clients

o It can execute also non DSS executables

Potential drawbacks are:

o It is a local service which starts tasks in the same machine as the scheduler,

thus load-spreading of batch jobs is a manual process requiring access to all

the machines involved

o Cross-computer access for the task schedule is possible, but will require lo-

cal permissions for a domain account

 Using the scheduler on the database server. As the server is either Linux or Win-

dows the immediate options are: Cron for Linux and Scheduled Tasks for Windows.

For both situations the benefits of using the database server include:

o One common place to define triggers

Nile Basin DSS

Inception Report

109

Appendix D

Software Architecture Document

o All triggers use the same clock

With respect to distributed execution of the jobs having the scheduling on the server

in both instances suffer from the problem of providing credentials as well as starting

processes on remote machines.

The Cron task scheduler with Linux "only" triggers one command hence using the

server trigger will involve different logic in Corporate and Professional version of

the software.

In either case the NB DSS will need an editor for configuration of the commands to

execute as well as supply (a number of) executables which can run common operations

in batch.

Scripting (see section 6.4) is a likely vehicle for creation of batch operations to be per-

formed, but stand-alone executables and batch files are also possibilities with the exter-

nal schedulers. Direct use of the multi-step tasks in the Windows Task Scheduler will

enable sequencing of actions, but it is also a possibility that this may be supplied by the

NB DSS application as a separate software component.

Logically it is tied to the DSS proxy, which in deployment context is a NB DSS repre-

sentative (without the GUI) capable of performing tasks such as running scenarios and

generating reports in back-end computers. The NB DSS scheduling will make use of the

DSS Proxy to control execution of unsupervised tasks.

Figure 6.8 Concept of scheduling and batch

Figure 6.7 illustrates a likely scheduling scenario. The scheduler triggers execution of a

task – and alerts the DSS Proxy (1). The DSS Proxy reads the definition of tasks (and

steps) in the database (2) and executes them (3). Each task (and step) may interact with

the database also (4).

NB DSS

Database

DSS proxy

2

1

Scheduler

Task(steps)3

4

Nile Basin DSS

Inception Report

110

Appendix D

Software Architecture Document

Scheduler, DSS proxy and DSS Database may be located on different machines. The

scheduled trigger must have permissions to talk to the DSS Proxy, which in turn must

have permissions to communicate with the database (be configured to use a dedicated

NB DSS login account) and each of the tasks (steps) must also include configuration of

credentials to use for database communication, as well as credentials for accessing other

resources required to execute the task. The configuration of these external components

shall de designed during the detailed design stages.

6.6 Database Reports

The requested functionality for supporting database reports as defined and discussed in

the ToR and “4+1” use cases is not detailed at a level that provides for a precise archi-

tectural design. However, indicate that the likely components involved in the reporting

functionality are:

 A query part

 A report template definition and selection part

 A report part

The query definition part deals with definition, selection and execution of queries. One

likely design for this part is based on parameterised queries – either as SQL strings or

expressions at a higher abstraction level. I.e. the user can when generating a query select

a parameterised query, provide the parameters, select attributes to be included in the

output and execute the query. A super-user or system administrator might be allowed to

create new parameterised queries.

In connection with running the query, the user can select a template that defines the

format of the report. I.e. the generated report will be formatted according to the report

template.

The report part deals with how to format the report according to the selected template,

how to store the report within the database and possible how to export it.

The Consultant feels a need to further clarify what shall be the functionality of report-

ing.

Nile Basin DSS

Inception Report

111

Appendix D

Software Architecture Document

7 VIEWPOINT: IMPLEMENTATION

This part of the document describes the system as seen from a software developer point

of view, i.e. its implementation. Focus for this section is the GIS integration, Interna-

tionalization and data types and unit handling.

7.1 GIS Integration

The basic GIS functionality provided by the DSS Front-end is not based on custom de-

veloped code but on integration with 2 3
rd

 party GIS components. These are:

 PostGIS for storage

 ThinkGeo for visualization and simple UI-related GIS processing like unions

and intersects

This section describes the integration between the GIS components and the DSS Front-

end.

Any GIS system basically consists of 3 parts – storage, processing and visualization of

spatial data. The description of the GIS integration architecture is organized accord-

ingly, i.e.

1. How is GIS data stored within the DSS Front-end

2. Where and how in the architectural framework does GIS processing take place

3. Display of GIS data

7.1.1 Overall GIS Architecture
The 3 GIS functionality areas – storage, processing and visualization – are mapped on

the DSS architecture as depicted in Figure 7.1 below.

Nile Basin DSS

Inception Report

112

Appendix D

Software Architecture Document

Figure 7.1 Location of GIS functionality on the baseline architecture

Note from the figure that:

 PostGIS and PostgreSQL is together responsible for storage of GIS data.

 GEO processing capabilities is performed by DSS Tools which logically belongs

to the business layer and for simple UI-related functionality (zooming, panning,

etc) directly in the GIS view.

 Visualization is done solely by the GIS view component which depends on

ThinkGeo for rendering and interacting with the view.

 GIS data is converted from PostGIS geometry based data to WKB based data at

the data access layer and to the ThinkGeo based format at UI-layer. In this way

the influence of the 3
rd

 party ThinkGeo component on the whole system is kept

to a minimum. Note also that ThinkGeo resides only at the UI-layer level.

GIS

Explorer

GIS

View

GIS

Business service

GIS

Data Acces

PostgreSQL

PostGIS

A

B

BB

C

DSS tools

ThinkGeo

B

Geometry formats

 A: PostGIS geomtery and raster

 B: WKB geometry and raster

 C: ThinkGeo geometry and raster

Interpolation,

delineation etc

UI-

Layer

Business-

Layer

Data Access-

Layer

Database-

Layer

Nile Basin DSS

Inception Report

113

Appendix D

Software Architecture Document

7.1.2 GIS Storage
PostGIS is a spatial extension for PostgreSQL and it complies with the OpenGIS Con-

sortium (OGC) "Simple Features for SQL" specification, and provides high-

performance spatial SQL access to GIS objects in the database. I.e. it provides the data

types necessary for storing and querying spatial data. This section describes the archi-

tectural pattern used for the overall system design. Once the PostGIS component is in-

stalled successfully, a spatial database is created in the PostgreSQL database to support

all the spatial functionalities.

The OGC compliance comprises the following with respect to storage:

 It supports all the OpenGIS object types

 It supports operations and the SQL schema definitions to insert, query, manipu-

late and delete spatial objects.

 It supports the OpenGIS WKT and WKB representations of geometries.

 It uses OpenGIS SRTEXT representations alongside PROJ4 representations to

provide coordinate system capabilities.

Note: At the time of writing raster data is not supported by PostGIS; but an open source

project – WKTRASTER – works on extending PostGIS with raster support. The aim of

the project is to support raster formats by adding a new data type – called raster – to

PostGIS. It is the ultimate intention to have WKTRASTER embedded with PostGIS. A

temporary solution is to store the raster data as BLOB’s in the database and have the

GIS Manager’s data access layer and business layer processing the raster files. Think-

Geo has strong support for raster data.

The DSS Front-end data access layer (DL) as shown in Figure 7.2, also accommodates

for spatial data.

Nile Basin DSS

Inception Report

114

Appendix D

Software Architecture Document

GIS

Data Access Layer

Database

PostGIS

PostgreSQL
Spatial Data

Spatial queries

and geometry

handling

Figure 7.2 Query for spatial data

The DL support for spatial data is based on data type conversion functionality provided

by the PostGIS component. PostGIS stores spatial data in the PostgreSQL database us-

ing the geometry type – geometry is a specific PostGIS data type added to PostgreSQL

through PostGIS. Traditional programming languages like C# do not provide a corre-

sponding data type, i.e. the data type needs to be mapped.

When the DL performs a query – that being a read, insert or create statement - against

the PostgreSQL database involving tables with geometry data types, PostGIS will come

in action and – and if instructed so in the SQL statement - convert the geometry data

type to or from a text string (WKT).

The DL leverages this functionality in order to do pass spatial data to the DSS Front-end

layer for processing.

7.1.3 Geo-processing
Geo-processing involves manipulating spatial data for various purposes, e.g. interpolat-

ing spatial data. This is implemented with the DSS Tools component that logically re-

sides at the business layer level, see Figure 7.1

Different options exist for implementing the Geo-processing tools:

1. Use of PostGIS geo-processing capabilities. PostGIS geo-processing is made

through SQL functions embedded with the SQL queries.

Nile Basin DSS

Inception Report

115

Appendix D

Software Architecture Document

2. Use of ThinkGeo geo-processing capabilities. ThinkGeo geo-processing is made

through dedicated geo-processing component.

3. Custom developing the functionality based on standard algorithms.

During the detailed analysis and design stages the preferred way to implement geo-

processing will be taken.

7.1.4 GIS Visualization
All GIS visualization and UI interactions are performed through the ThinkGeo compo-

nent. This component includes all GIS visualization and user interface interaction fea-

tures required by the DSS. Comprising:

 Pan, zoom, select features

 Forwarding of click and key press events to the DSS Front-end

Additionally ThinkGeo includes a large set of basic GIS functionalities and possibilities

for directly interacting with a number of standard database systems – including Post-

greSQL and PostGIS. The ThinkGeo control is also capable of reading data from ESRI

geo-databases.

7.2 Internationalization

NBI has a specific requirement for support of English and French languages in the ap-

plication user interface and help files. This section describes the solution with respect to

internationalization, i.e. the ability for the DSS Front-end to present itself to the user in

different languages.

7.2.1 GUI components – labels, texts
The application will build upon the facilities in and preferred way of the Microsoft

.NET Framework. This includes:

 Separation of all localizable texts and string from the code by placing them in re-

sources files

 Translate for preferred languages (English, French) and include the resources with

the application. English is the default language of the application

 Use of the .Net Resource Manager to access these resources at runtime

7.2.2 Regional settings – date time formats, decimal numbers
The UI of the DSS Front-end will adjust to regional settings of the client workstation

on which it is running in the following way:

 Determine the language used by Windows

 Choose the same language for the application if available. Otherwise choose the de-

fault language

 Use regional settings with respect to

Nile Basin DSS

Inception Report

116

Appendix D

Software Architecture Document

o Formats of data in input fields: date, time, numbers and decimal points

o Use date and time in the user specified time zone

 If the user wants to override the language chose by the method above allow an

override, for instance via a command-line argument.

 Online help opens in the language matching that of the application

The above is only applicable to the DSS Front-end. 3
rd

 party tools and programs may

have limitations with respect to localization.

The SRS discusses how data should be presented to users with respect to unit and sug-

gest that these shall follow the choice of the individual users. In Windows users use the

Regional and Language Options control panel applet for defining the format of often

used data types like number, data and currency. A similar scheme will be implemented

for the NB DSS allowing the individual user to specify the preferred unit for different

data types, e.g. preferred units for water levels, rain fall etc.

This scheme will be implemented through the use of the following design decisions:

 Data in the database will always be stored in system preferred units, e.g. water

levels in meters.

 Data will - when fetched for display - be converted to the user‟s preferred unit.

 Data entities in the database will include an attribute defining the data type.

 Data being imported shall have their data type and unit specified.

And supported by the following components:

 The DHI EUM component for engineering unit management which is described

in the SRS (see /2/).

 The SystemUnits table in the Global data compartment defining the system pre-

ferred units

 The SystemUserUnits table defining the preferred units on a per user basis

Nile Basin DSS

Inception Report

117

Appendix D

Software Architecture Document

8 VIEWPOINT: IT INFRASTRUCTURE

This chapter describes the system from an IT infrastructure and deployment point of

view. The focus for the description is the database, the deployment architecture and re-

quirements to the use of operating systems, network etc.

8.1 Database

This section describes the infrastructure aspects of the database solution that has been

selected for the NB DSS. The logical use of the database is discussed in Section 5.1.3.5.

The database solution covers not only the database itself but also other aspects closely

related to the selected database. The aspects discussed below comprise the following:

 Description of database and its role in the NB DSS

 Storage of GIS objects

 The data solution technology stack

 Database administration

8.1.1 The Database
PostgreSQL will be used by the NB DSS for all data storage. This database is a very

widely used and well-known database and has been so for the at least last 10-15 years.

The database has a reputation of possessing good enterprise abilities, being fairly easy

to manage, provide comprehensive supporting functionality and – not least – be avail-

able for a wide variety of operating systems. The latter supports the requirement that the

database part shall be available for both Windows and Linux.

8.1.2 GIS Functionality
PostgreSQL does not provide possibilities for storing and processing spatial data. The

necessary data type for storing geometries and the functionality for working with spatial

data does not exist. However, the well-known PostGIS extension provides the geometry

data type and thus the spatial functionality.

PostGIS is a spatial extension for PostgreSQL which complies with the OpenGIS "Sim-

ple Features for SQL" specification, and provides high-performance spatial SQL access

to GIS objects in the database. I.e., it provides the data types necessary for storing and

querying spatial data.

8.1.3 The Data Solution Technology Stack
The NB DSS design is based on a standard 3-layer application architecture pattern but

typically is deployed on 2 tiers – the database tier and the application tier. This is de-

picted in Figure 8.1 below.

Nile Basin DSS

Inception Report

118

Appendix D

Software Architecture Document

Figure 8.1 NB DSS tiers (simplified) (UML)

The technology stack deployed on the Database Server (database node) and on the Cli-

ent Workstation (workstation node) enable the DSS Front-end to interface with the da-

tabase is depicted in Figure 8.2 below.

Database server

Client workstation

Model tools UI

Model tools

DSS Front-end

DSS Database

Nile Basin DSS

Inception Report

119

Appendix D

Software Architecture Document

 Figure 8.2 Technology stack (UML)

The NB DSS uses Microsoft ADO.NET to communicate with the database. However,

because Microsoft does not provide an ADO.NET driver for PostgreSQL, a third data

party driver, NPGSQL from pgFoundry, must be installed on workstations running the

DSS Front-end.

The anticipated versions of the technology components are as follows:

 PostgreSQL – 8.4

 PostGIS – 1.4

 NPGSQL

 PostgreSQL tools – corresponding to the selected version of PostgreSQL

Changes to these selected versions might occur according to new releases.

The NPGSQL Data Provider communicates on behalf of ADO.NET with the Post-

greSQL client access component for interacting with the database.

Datebase Server

Client Workstation

NPGSQL

PostgreSQL ADO.NET provider

ADO.NET

PostgreSQL

Client access

PostgreSQL

PostGIS

pgTools

pgAdmin3

Nile Basin DSS

Inception Report

120

Appendix D

Software Architecture Document

PgAdmin 3 will be used as system administration console for the PostgreSQL database

and a collection of database tools, pgTools, will likely be used for providing backup and

restore functionality.

8.1.4 Database Administration
Most database administration tasks can be performed from within NB DSS – e.g., user

management, data import and data export. However, there are a few situations where a

systems administrator must interact directly with the database, i.e. from outside the NB

DSS. An example of this is backup and restore.

The NB DSS system provides description on how to perform such tasks. These descrip-

tions will be based on the use of standard PostgreSQL system administration tools like

pgAdmin III, pg_dump, pg_dumpall and pgsql.

8.2 Deployment

This section describes deployment related aspects of NB DSS. The aspects covered are:

 Client-server architecture – a description of the basic pattern used for the appli-

cation design

 Configurations – a discussion on how the major components of the system can

be deployed

 Processes – a description of the processes – and their communication – within

the system

 Hardware – a description of the required hardware elements

 Installation – a discussion of the system can be installed

8.2.1 Client-server architecture
A user of NB DSS will frequently perform complex analyses on large data sets, often

different analyses on the same data sets (e.g. to generate an optimal set of synthetic

time series as preparation for ensemble modelling).

This implies that substantial amounts of data must be transferred over a network. In or-

der to improve the response time of the system (and hence the experience of working

with the system) the dependency on network capacity is minimized by deploying the

over a 2-tier client-server decomposition pattern. This 2-tier decomposition of NB DSS

is depicted in Figure 8.3 below.

Nile Basin DSS

Inception Report

121

Appendix D

Software Architecture Document

Figure 8.3 Overall NB DSS de-composition (UML)

The DSS Front-end holds all the DSS processing functionality, e.g., time series man-

agement and scenario management, and is installed on tier 1. Tier 2 hosts the database

and the model tools. This approach has the following advantages compared to a 3-tier

application where all or a part of the processing capabilities are centralized on an appli-

cation server:

 The DSS Front-end can load data into memory and process them without the

need for network operations

 Data does not have to transmitted between more than 2 computers in the system

8.2.2 Configurations
The NB DSS can be deployed in a number of different ways or configurations – each

having its own advantages and disadvantages.

8.2.2.1 Professional Edition

In the simplest form all the 4 main components are – as depicted below - installed on

the same computer (client workstation). This configuration is called the professional

edition.

Figure 8.4 Professional edition (UML)

The primary aim of the professional edition is to service organisation or individuals

with limited DSS needs or where only one person has to work with the system. The

primary limitation of the professional edition is however that it only serves one person.

DSS Front-end

Model tools Database

Tier 1

Tier 2

Client workstation

Model tools UI

Model tools

DSS Front-end

DSS DatabaseDSS Proxy

Nile Basin DSS

Inception Report

122

Appendix D

Software Architecture Document

It will be difficult to apply professional editions in an environment where work groups

have to collaborate on e.g. studies. Other limitations to the professional version prevail:

 It requires model tools to be installed locally

 It typically does not participate in an institutionalized data synchronization

8.2.2.2 Corporate Edition

Organisations that have more substantial needs or where groups of people must share

data should opt for a Corporate edition. A Corporate edition is composed of the same

components as the professional edition, but is deployed differently. A number of con-

figurations are possible. Two of them are shown below in Figure 8.5 and Figure 8.6.

Figure 8.5 Corporate edition - deployment type A (UML)

Database server

Client workstation

Model tools UI

Model tools

DSS Front-end

DSS Database

DSS Proxy

Nile Basin DSS

Inception Report

123

Appendix D

Software Architecture Document

Figure 8.6 Corporate edition - deployment type B (UML)

Figure 8.5 and Figure 8.6 illustrate the following configurations:

 A: A configuration where the system is deployed over 2 computers

 B: A configuration where the system is deployed over 3 computers
12

The difference between the two options is the installation of the model tools. In option

A, these are installed together with the model tool user interface and DSS Front-end on

the client workstation, while in Option B, the model tools are installed on a central

simulation server.

Advantages and disadvantages with the 2 solutions include:

 Installing the model tools on a dedicated simulation server will make it possible

for an organisation to share a common powerful workstation for scenario simu-

lations, thus optimizing the utilization of hardware resources.

 An organisation that undertakes studies likely must have the modelling tools

(also) deployed on the client workstation. Partly in order to integrate new mod-

els into the NB DSS and partly because most modelling systems will not be able

12

 The DSS Proxy component is a service that on behalf of the DSS Front-end manages simulations.

Database server

Client workstation

Model tools UI

Model tools

DSS Front-end

DSS Database

Simulation server

DSS Proxy

Model tools

DSS Proxy

Nile Basin DSS

Inception Report

124

Appendix D

Software Architecture Document

relay simulations to other computers in the network, such organisations would

benefit from a centralized deployment of model tools

 License management of modelling packages might become easier – and poten-

tial cheaper – with a single centralized simulation server. Having modelling

packages scattered on the network will require a queuing system to ensure li-

cense availability (i.e., a dedicated license server).

 A centralized simulation server will make it possible – or at least – simpler to

manage a system where the DSS database links to simulation output instead of

embedding it.

An organisation deploying a corporate edition must carefully consider these aspects be-

fore finally selecting the deployment configuration.

8.2.3 Processes
Each of the 4 components identified in the above paragraph, i.e. DSS Front-end, DSS

Proxy, Model Tools (including UI) and the DSS Database, consist of one or more proc-

esses. The picture below depicts the processes associated with the components.

Figure 8.7 DSS Front-end Processes (UML)

Figure 8.8 DSS Proxy component process (UML)

<<process>>

DSS Front-end

<<process>>

DSS Proxy

<<process>>

Model Adapter

<<process>>

Model Adapter

Configuration adapter

(could also be in-process)

Simulation adapter

(could also be in-process)

<<process>>

DSS Proxy

<<process>>

Model Adapter

Simulation adapter

(could also be in-process)

Nile Basin DSS

Inception Report

125

Appendix D

Software Architecture Document

Figure 8.9 DSS Database processes (UML)

Figure 8.10 Model Tools processes (UML)

Figure 8.11 Model Tools UI processes (UML)

Note the following from the above figures:

 The DSS Front-end process uses the DSS Proxy process to initiate and monitor

model simulations and the Model Adapter process to import and export models

 The DSS Proxy uses the Model Adapter to insert simulation output in the DSS

database

 Model Adapters, Model Tool UI and Model Tools come in triples; i.e. for each

model tool one model adapter and (likely) a corresponding model tool UI must

exist.

Each of the above process is briefly characterized in the table below.

Table 8.1 Processes

Process Description

DSS Front-end

process

This is a process created when the user starts the DSS Front-end on his

workstation. It is a standard Windows process running managed code.

DSS Proxy

process

This is a Windows service process that is started when the computer boots

on which the service is installed.

The purpose of the DSS Proxy process is to launch a model simulation with-

out invoking the DSS Front-end process. This is necessary to:

 Be able to run a simulation on another computer than the one exe-

cuting the DSS Front-end process.

 Allow the user to exit the DSS Front-end without halting the simula-

tion.

 Allowing the user to suspend a simulation (e.g., if the simulation

takes all the computer resources, thus making interactive work diffi-

cult).

<<process>>

Database

<<process>>

Model tool 1

<<process>>

Model tool 2

<<process>>

Model tool UI 1

<<process>>

Model tool UI 2

Nile Basin DSS

Inception Report

126

Appendix D

Software Architecture Document

Process Description

Model Adapter This is a standard Windows process with the purpose of bridging between

the DSS Front-end and the model tools. The adapter will understand the

format of the model tools’ input and output data.

PostgreSQL

service

This is a Windows service or Linux daemon application. It runs the Post-

greSQL RDBMS database server.

Model tool This is a standard Windows process running model simulation.

Model tool UI This is a standard Windows process running the native user interface to the

corresponding model tool. Some modelling systems might combine the simu-

lation part and the user interface into a single executable or might not all pro-

vide a user interface at all.

8.2.4 Operating Systems
The various hardware nodes in a NB DSS deployment require different operating sys-

tems.

 The Database server can be installed on either Windows or Linux. At the time of

writing the exact version of these two supported operating systems are not de-

cided. Likely candidates are one of latest Windows Server operating systems,

the latest release of the Windows client operating system and the latest Ubuntu

(Linux) Server version.

 The required operating system for the Simulation server varies from modelling

system to modelling system. The DHI supplied modelling systems are generally

supported by the two most recent versions of the Windows client operating sys-

tems – currently Windows Vista Business Edition and Windows XP.

 The DSS Front-end will be supported on the latest Windows client operating

system.

Note that if an organisation decides to deploy a Professional edition of the NB DSS

system or consolidate the model tools with the client workstation, that organisation

must carefully select an operating system that is supported by both the DSS Front-

end and the employed model tools.

8.2.5 Hardware
Just as the supported operating systems – as described above – can vary between hard-

ware nodes, so does the requirements for the hardware.

 The Database server should – when deployed in an organisation where the DSS

system is mission critical – be installed on proper server hardware. This com-

prises a system with characteristics as shown below:

o Disks with high throughput

o RAID 1 disks for the operating system and database server installation

o RAID 5 disks for the database files

o Redundant power supply

Nile Basin DSS

Inception Report

127

Appendix D

Software Architecture Document

o Dual core (or better) processor

 Simulation server – should be a high performance workstation, i.e., processor

speed is typically more important than disk speed. The characteristics of such a

server comprise:

o Dual core processor (or better). If the simulation engines installed on the

workstation can utilize multiple cores
13

, the number of cores should be

scaled accordingly. Similarly, the number of processor or processor cores

should be sized according to an estimated load – the number of simula-

tions running in parallel.

o 4 GB of memory or more

o Sufficient hard disk space to accommodate for the simulation output

 Client workstation – a standard modern workstation or laptop should suffice.

Characteristics comprise:

o 4 GB of memory

o Dual core processor (or better)

o High resolution graphics adapter (e.g. 1680x1440) and corresponding

monitor

If an organisation chooses to consolidate the deployment on 1 or 2 hardware nodes, the

hardware characteristics should be selected carefully.

Additionally hardware requirements:

 The Local Area Network (LAN) connecting the nodes should accommodate for

at least 10 Mbps between the client workstations and the simulation server and

at least 100 Mbps between the database server and the simulation server.

 The installation – at least the database server and simulation server – should util-

ize an uninterruptible power supply.

 An organisation could consider duplicating the database server in a cluster to in-

crease redundancy.

8.2.6 Installation and setup Configuration
Installation of a NB DSS system comprises a number of steps:

1. Installation and configuration of the database – this is performed using the Post-

greSQL standard installer maintained by EnterpriseDB – see

www.enterprisedb.com. After the installation, the database must be configured

according to NB DSS supplied installation configurations.

13

 At the time of writing only few of DHI’s MIKE products can leverage multiple cores (currently only the flexible mesh

version of MIKE 21).

Nile Basin DSS

Inception Report

128

Appendix D

Software Architecture Document

2. Installation and possible configuration of the model tool software – this is per-

formed with model tool native installers. If the model tools are installed on a

dedicated simulation server, the DSS Proxy and the model tool‟s adapter must

be installed on the said server.

3. Installation and configuration of the DSS Front-end – this is performed using the

installer supplied with the DSS Front-end.

